Tổng S = 30 + 32 + 34 + 36 +.....................+32006 + 32008.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ra, ta có :
`A=1+32+34+36+....+32008`
\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`
`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`
\(\Rightarrow\) `8A=(-1)+32010`
\(\Rightarrow\) `8A-32010=(-1)`
@Nae
b: \(S=3^0+3^2+3^4+...+3^{2002}\)
\(=\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)
\(=91\cdot\left(1+...+3^{1998}\right)⋮7\)
Số số của dãy trên là:
(32009 - 30):1+1 =31980 (số)
Số cặp số của dãy là:
31980 : 2 = 15990 (cặp)
\(30+31+32+....+32008+32009\)
\(=\left(30+32009\right)+\left(31+32008\right)+...\)
\(=32039\times15990=512303610\)
Vậy \(512303610\div8=64037951\left(dư2\right)\)
Tổng của số thứ nhất và số thứ hai là:
\(32\times2=64\)
Tổng của số thứ hai và số thứ ba là:
\(36\times2=72\)
Tổng của số thứ ba và số thứ nhất là:
\(30\times2=60\)
Tổng của ba số là:
\(\left(64+72+60\right)\div2=98\)
Số thứ ba là:
\(98-64=34\)
Số thứ nhất là:
\(98-72=26\)
Số thứ hai là:
\(98-60=38\)
Chọn B.
Ta có: \(\dfrac{1}{4}=\dfrac{10}{40}=\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}\)
Mà \(\dfrac{1}{31}>\dfrac{1}{40}\)
\(\dfrac{1}{32}>\dfrac{1}{40}\)
\(\dfrac{1}{33}>\dfrac{1}{40}\)
\(\dfrac{1}{34}>\dfrac{1}{40}\)
\(\dfrac{1}{35}>\dfrac{1}{40}\)
\(\dfrac{1}{36}>\dfrac{1}{40}\)
\(\dfrac{1}{37}>\dfrac{1}{40}\)
\(\dfrac{1}{38}>\dfrac{1}{40}\)
\(\dfrac{1}{39}>\dfrac{1}{40}\)
\(\Rightarrow\) \(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{39}+\dfrac{1}{40}>\dfrac{10}{40}=\dfrac{1}{4}\)
Vậy \(S>\dfrac{1}{4}\)