lam giup mik voi
tinh gia tri cua bieu thu
D=(2^9.3+2^9.5)-2^12
(1+2+3+.....+100).(1^2+2^2+3^2+.....+100^2).(65.111-13.15.37)
C=2^10-2
F= 1+3^1+3^2+3^3 +.....+3^100
mik dag can gap lam
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+2+1+2+3+1+2+3+4+1+2+3+4+5
=(1+2)x4+3x3+4x2+5
=3x4+9+8+5
=12+9+8+5
=34
Thay a = -1 , b=1 vào biểu thức A
=> A = 5.(-1)^3.1^8 = - 5
Thay a = -1 , b= 2 vào biểu thức B
=>B = -9.(-1)^4 . 2^2 = - 36
Ta có :
C = ax + ay + bx + by = a(x+y) + b(x+y) = (x+y)(a+b)
Thay a+b = - 3 , x+y = 17 vào biểu thức C
C = ( -3)(17) = -51
Lần sau viết cái đề rõ rõ ra nhs!!!
a) \(A=2+2^2+2^3+................+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+................+2^{100}+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+..............+2^{100}+2^{101}\right)-\left(2+2^2+............+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
b) \(B=1+3+3^2+..................+3^{2009}\)
\(\Rightarrow3B=3+3^2+3^3+..................+3^{2009}+3^{2010}\)
\(\Rightarrow3B-B=\left(3+3^2+...............+3^{2010}\right)-\left(1+3+3^2+.............+3^{2009}\right)\)
\(\Rightarrow2B=3^{2010}-1\)
\(\Rightarrow B=\dfrac{3^{2010}-1}{2}\)
c) \(C=4+4^2+4^3+................+4^n\)
\(\Rightarrow4C=4^2+4^3+.................+4^n+4^{n+1}\)
\(\Rightarrow4C-C=\left(4^2+4^3+.............+4^n+4^{n+1}\right)-\left(4+4^2+............+4^n\right)\)
\(\Rightarrow3C=4^{n+1}-4\)
\(\Rightarrow C=\dfrac{4^{n+1}-4}{3}\)
(1+2+3+.....+100).(12+22+32+.....+102).(65.111-13.15.37)
=(1+2+3+.....+100).(12+22+32+.....+102)(65.111-13.555)
=(1+2+3+.....+100).(12+22+32+.....+102)(65.111-13.5.111)
=(1+2+3+.....+100).(12+22+32+.....+102)[111(65-65)]
=(1+2+3+.....+100).(12+22+32+.....+102)(100.0)
=(1+2+3+.....+100).(12+22+32+.....+102)0
=0
a:
ĐKXĐ: x<>2
|2x-3|=1
=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Thay x=1 vào A, ta được:
\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)
b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)
\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)
\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)
c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)
\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)
Để P lớn nhất thì \(\dfrac{2}{x-2}\) max
=>x-2=1
=>x=3(nhận)
\(D=\left(2^9.3+2^9.5\right)-2^{12}\)
\(D=2^9.\left(3+2\right)-2^{12}\)
\(D=2^9.5-2^{12}\)
\(D=512.5-4096\)
\(D=2560-4096\)
\(D=-1536\)
\(\left(1+2+3+...+100\right).\left(1^2+2^2+3^2+...+100^2\right).\left(65.111-13.15.37\right)\)
\(=\left(1+2+3+...+100\right).\left(1^2+2^2+3^2+...+100^2\right).\left(7215-7215\right)\)
\(=\left(1+2+3+...+100\right).\left(1^2+2^2+3^2+...+100^2\right).0\)
\(=0\)
D=(29.3+29.5)-212
D=((29.(3+5))-212
D=(29.8)-212
D=(29.23)-212
D=29+3-212
D=212-212
D=0
(1+2+3+...+100).(12+22+32+....+1002).(65.111-13.15.37)
=(1+2+3+...+100).(12+22+32+....+1002).7215-7215
=(1+2+3+...+100).(12+22+32+....+1002).0
=0
C=210-2
C=29+1-2
C=29.2-2
C=2.(29-1)
C=2.(512-1)\
C=2.511
C=1022
F=1+31+32+33+......+3100
F=3+31+32+33+......+3100
3F=3.(3+31+32+33+......+3100)
3F=32+32+33+34+......+3100
3F-F=3100+32-3-3
2F=3100+9-3-3
F=\(\frac{3^{100}+3}{2}\)
Chúc bn học tốt