cho tam giác abc vuông tại a. Lấy m thuộc bc sao cho am bằng 1/2 bc n là trung điểm của ab . a cm tam giác abm cân. b tứ giác mnac là hình thang vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : tam giác ABC vuông tại A (gt)
Mà: AM=BC/2(gt)
=>M là trung điểm của BC
=>BM=CM=AM=BC/2
=>tam giác AMB cân tại M
b)Ta có : tam giác AMB cân tại M
Mà: MN là trung tuyến của tam giác AMB nên:
MN cũng là đường cao của tam giác AMB
=>MN vuông góc với AB
Mà AC vuông góc với AB (tam giác ABC vuông tại A)
nên: MN//AC
=>MNAC là hình thang
Ta lại có: góc BAC =90o
Vậy MNAC là hình thang vuông
Ta có : Đường trung tuyến ứng với cạnh huyền tam giác vuông thì bằng 1/2 cạnh huyền
Mà Ta có \(AM=\frac{1}{2}BC\)
BC là cạnh huyền tam giác vuông ABC
=> AM là đường trung tuyến tam giác ABC
=>AM=MB=MC
Mà : MA=MB
=> tam giác AMB là tam giác cân tại M
Ta có
MN là đường trung tuyến trong tam giác cân AMB (AN=NB)
=> MN cũng là đường cao
=> MN vuông góc AB
mà AC cũng vuông góc AB
=>MN//AC
=> MNCA là hình thang
mà: góc MNA= góc NAC = 90 độ
=> MNAC là hình thang vuông
XONG !!!!
T I C K nha cảm ơn
a)Ta có : tam giác ABC vuông tại A (gt)
Mà: AM=BC/2(gt)
=>M là trung điểm của BC
=>BM=CM=AM=BC/2
=>tam giác AMB cân tại M
b)Ta có : tam giác AMB cân tại M
Mà: MN là trung tuyến của tam giác AMB nên:
MN cũng là đường cao của tam giác AMB
=>MN vuông góc với AB
Mà AC vuông góc với AB (tam giác ABC vuông tại A)
nên: MN//AC
=>MNAC là hình thang
Ta lại có: góc BAC =90o
Vậy MNAC là hình thang vuông
a, Tam giác ABC vuông tại A có AM=BC/2 (M thuộc BC) => AM là trung tuyến ứng với cạnh huyền BC
=> AM=MB=MC
=> Tam giác AMB cân tại M
b, M là TĐ BC, N là TĐ AB
=> MN là đường TB của tam giác ABC
=> MN //AC
=> MNAC là hình thang
a)Ta có : tam giác ABC vuông tại A (gt)
Mà: AM=BC/2(gt)
=>M là trung điểm của BC
=>BM=CM=AM=BC/2
=>tam giác AMB cân tại M
b)Ta có : tam giác AMB cân tại M
Mà: MN là trung tuyến của tam giác AMB nên:
MN cũng là đường cao của tam giác AMB
=>MN vuông góc với AB
Mà AC vuông góc với AB (tam giác ABC vuông tại A)
nên: MN//AC
=>MNAC là hình thang
Ta lại có: góc BAC =90o
Vậy MNAC là hình thang vuông
cho mình xin fb được không :))
Dựng hình ( như trên )
a,Ta có \(K=A=90^0\)=> tứ giác BKCA là hình chữ nhật
Lại có \(\hept{\begin{cases}BN=NA\\KH=HC\end{cases}< =>NH//BK/}/AC\)
\(< =>BNH=KHN=ANH=CHN=90^0\)
Nên ta có thể xét được hai tam giác BMN = AMN ( c-g-c )
<=> BM = AM <=> tam giác AMB cân tại M
b, Ta có MN và HN cùng vuông góc với BA
Nên N,H,M thẳng hàng <=> NM // AC ( do cùng vuông góc với AB )
Từ MN // AC và A = N = 90* <=> tứ giác NMCA là hình thang vuông
1.Giải:
a. Vì tam giác ABC vuông tại A và AM = \(\frac{1}{2}\)BC
=> AM là đường trung tuyến ứng với cạnh BC
=> M là trung điểm của cạnh BC
=> AM = BM = \(\frac{1}{2}\)BC
Vì AM = BM => Tam giác ABM cân tại M
b. Vì N là trung điểm của AB
=> MN là đường trung tuyến ứng với cạnh AB của tam giác ABM
Mà tam giác ABM cân tại M ( câu a )
=> MN đồng thời là đường cao xuất phát từ M của tam giác ABM
=> \(MN\perp AB\)
Do đó: MN//AC (cùng vuông góc với AB)
=> MNAC là hình thang
Mặt khác: \(\widehat{NAC}\)= \(^{90^0}\)(gt)
=> Tứ giá MNAC là hình thang vuông.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//MC và DE=MC
Xét tứ giác DMCE có
DE//MC
DE=MC
Do đó: DMCE là hình bình hành
c: ΔHAC vuông tại H có HE là trung tuyến
nên \(HE=\dfrac{1}{2}AC\)
mà \(MD=\dfrac{1}{2}AC\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
nên DHME là hình thang
mà HE=MD
nên DHME là hình thang cân
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
EA=EH
DA=DH
Do đó: ED là đường trung trực của AH