cho tam giac ABC co AB=AC.Goi M la trung diem cua BC.CMR:a)AM la duong phan giac cua goc A b,AM la duong cao cua tam giac ABC c,AM la duong trung truc cua BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ đề bài phải là \(\Delta ABC\) cân tại A chứ. Hoàng Thùy Linh
Bài 4 :
a) Xét \(\Delta AKB,\Delta AKC\) có :
\(AB=AC\) (gt)
\(AK:Chung\)
\(BK=CK\) (K là trung điểm của BC)
=> \(\Delta AKB=\Delta AKC\left(c.c.c\right)\)=> đpcm
=> \(\widehat{AKB}=\widehat{AKC}\) (2 góc tương ứng)
Mà có : \(\widehat{AKB}+\widehat{AKC}=180^{^O}\left(kềbù\right)\)
Suy ra : \(\widehat{AKB}=\widehat{AKC}=\dfrac{180^{^O}}{2}=90^{^O}\)
Do đó : \(AK\perp BC\left(đpcm\right)\)
b) Ta có : \(\left\{{}\begin{matrix}EC\perp BC\left(gt\right)\left(1\right)\\AK\perp BC\left(gt\right)\left(2\right)\end{matrix}\right.\)
Từ (1) và (2) => \(EC\perp AK\left(\perp BC\right)\)
=> đpcm
c) Xét \(\Delta ABC\) vuông cân tại A có :
\(\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^o\) (tổng 3 góc của 1 tam giác)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^{^O}-\widehat{BAC}}{2}=\dfrac{180^{^O}-90^{^O}}{2}=45^o\)
Hay : \(\widehat{EBC}=45^o\)
Xét \(\Delta BEC\) có :
\(\widehat{EBC}+\widehat{BCE}+\widehat{BEC}=180^o\) (tổng 3 góc của 1 tam giác)
\(\Rightarrow45^o+90^{^O}+\widehat{BEC}=180^o\)
\(\Rightarrow\widehat{BEC}=180^o-\left(45^o+90^o\right)=45^o\)
Vậy \(\widehat{BEC}\) có số đo góc bằng 45o
a: Vì AM là phân giác
nên sđ cung MB=sđ cung MC
=>MB=MC
mà OB=OC
nên OM là trung trực của BC
=>OM vuông góc BC tại trung điểm của BC
b: Kẻ đường kính AD
=>góc ACD=90 độ
Xét ΔACD vuông tại C và ΔAHB vuông tại H có
góc ADC=góc ABH
=>ΔACD đồng dạng với ΔAHB
=>góc BAH=góc CAD
=>góc HAM=góc OAM
=>AM là phân giác của góc OAH
a) Xét 2 \(\Delta\) \(ABM\) và \(ACM\) có:
\(AB=AC\left(gt\right)\)
\(BM=CM\) (vì M là trung điểm của \(BC\))
Cạnh AM chung
=> \(\Delta ABM=\Delta ACM\left(c-c-c\right)\)
=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
=> \(AM\) là đường phân giác của \(\widehat{A}.\)
b) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A.
Có \(AM\) là đường phân giác (cmt) đồng thời \(AM\) cũng là đường cao của \(\Delta ABC.\)
=> \(AM\) là đường cao của \(\Delta ABC.\)
c) Theo câu b) ta có \(\Delta ABC\) cân tại A.
Có \(AM\) là đường cao đồng thời \(AM\) cũng là đường trung trực của \(\Delta ABC.\)
=> \(AM\) là đường trung trực của \(BC.\)
Chúc bạn học tốt!