Giả sử ABCD là hình vuông nội tiếp tam giác MNP với A thuộc MN, B thuộc MP,C,D thuộc NP.Tính độ dài các cạnh của hình vuông ABCD biết NP=3 và đường cao MK=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
a: NP=căn 8^2+15^2=17cm
MK=8*15/17=120/17cm
b: góc MEK=góc MFK=góc FME=90 độ
=>MEKF là hình chữ nhật
=>MK=EF=120/17cm
c: ΔMKN vuông tại K có KE là đường cao
nên ME*MN=MK^2
ΔMKP vuông tại K có KF là đường cao
nên MF*MP=MK^2
=>ME*MN=MF*MP
a: ta có: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
hay HN=HP
b: NH=NP/2=8/2=4(cm)
=>MH=3(cm)
c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có
MH chung
\(\widehat{DMH}=\widehat{EMH}\)
Do đó: ΔMDH=ΔMEH
Suy ra: HD=HE
hay ΔHED cân tại H