Tìm x: (2-x) /2007 - 1 = (1-x) /2008 - x/2009
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\frac{x+1}{2009}+\frac{x+2}{2009}=\frac{x+10}{2000}+\frac{x+11}{1999}\)
\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)\)
\(\Rightarrow\frac{x+1+2009}{2009}+\frac{x+2+2008}{2008}=\frac{x+10+2000}{2000}+\frac{x+11+1999}{1999}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{2000}+\frac{x+2010}{1999}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{2000}-\frac{x+2010}{1999}=0\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2000}-\frac{1}{1999}\right)=0\)
Mà \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2000}-\frac{1}{1999}\ne0\)
=> x + 2010 = 0 => x = -2010
\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
\(\Leftrightarrow\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\right)=0\)
\(\Leftrightarrow x=2010\)
\(\Leftrightarrow\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)=\left(\frac{x-3}{2007}-1\right)+\left(\frac{x-4}{2006}-1\right)\)
\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=0\)
\(\Rightarrow x-2010=0\Rightarrow x=2010\)
Lời giải:
\(x=\frac{1}{2^{2009}}+\frac{2}{2^{2008}}+\frac{3}{2^{2007}}+....+\frac{2008}{2^2}+\frac{2009}{2}\)
\(2x = \frac{1}{2^{2008}}+\frac{2}{2^{2007}}+\frac{3}{2^{2006}}+...+\frac{2008}{2}+2009\)
\(\Rightarrow x=2x-x=2009-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2008}}-\frac{1}{2^{2009}}\)
\(\Rightarrow 2009-x=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2008}}+\frac{1}{2^{2009}}\)
\(\Rightarrow 2(2009-x)=1+\frac{1}{2}+....+\frac{1}{2^{2007}}+\frac{1}{2^{2008}}\)
\(\Rightarrow 2(2009-x)-(2009-x)=1-\frac{1}{2^{2009}}\)
\(\Rightarrow 2009-x=1-\frac{1}{2^{2009}}\\ \Rightarrow x=2009-(1-\frac{1}{2^{2009}})=2008+\frac{1}{2^{2009}}\)
áp dụng định lí Bê-du ta có:
R(x)=(-1)2009+(-1)2008+...+(-1)2+(-1)+2010=2009
xin lỗi tớ không biết kết quả tớ tính được có đúng không nhưng cách làm hình như đúng rồi đấy
ak thôi, mình giải đc rồi
(2-x)/2007-1=(1-x)/2008 -x/2009
<=>((2-x)/2007 +1)-2=(2009-x)/2008 - (2009-x)/2009
<=>(2009-x)/2007 -2=(2009-x)/2008 - (2009-x)/2009
<=>(2009-x)(1/2007-1/2008+1/2009)=2
=>x