\(P=\left(\frac{1}{a-1}+\frac{3\sqrt{a}+5}{a\sqrt{a}-a-\sqrt{a}+1}\right).\frac{\left(\sqrt{a}+1\right)^2}{4\sqrt{a}}\left(a>0,a\ne1\right)\)
a)Rút gọn
b)Đặt Q= \(\left(a-\sqrt{a}+1\right)P\).Chứng minh Q>1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
a) Ta có: \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)
\(=\left(\frac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\cdot\left(\frac{1}{1+\sqrt{x}}\right)^2\)
\(=\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{-\left(x-1\right)\left(-1-\sqrt{x}\right)}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{\left(1+\sqrt{x}\right)\cdot\left(-1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{-1\cdot\left(1+\sqrt{x}\right)^2}{\left(1+\sqrt{x}\right)^2}=-1\)
a) Ta có: \(A=\left(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\left(2\sqrt{4+\sqrt{5-2\cdot\sqrt{5}\cdot1+1}}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\left(2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\left(2\sqrt{4+\left|\sqrt{5}-1\right|}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)(Vì \(\sqrt{5}>1\))
\(=\left(2\sqrt{4+\sqrt{5}-1}\right)\cdot\sqrt{2}\cdot\left(\sqrt{5}-1\right)\)
\(=2\cdot\sqrt{3+\sqrt{5}}\cdot\sqrt{2}\cdot\left(\sqrt{5}-1\right)\)
\(=2\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{6+2\sqrt{5}}\)
\(=2\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{5+2\cdot\sqrt{5}\cdot1+1}\)
\(=2\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=2\cdot\left(\sqrt{5}-1\right)\cdot\left|\sqrt{5}+1\right|\)
\(=2\cdot\left(\sqrt{5}-1\right)\cdot\left(\sqrt{5}+1\right)\)
\(=2\cdot\left(5-1\right)\)
\(=2\cdot4=8\)
b) Ta có: \(B=\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}+\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\cdot\left(1-\frac{2}{a+1}\right)^2\)
\(=\left(\frac{\left(\sqrt{a}-1\right)^2+\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)}\right)\cdot\left(\frac{a+1-2}{a+1}\right)^2\)
\(=\frac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)}\cdot\frac{\left(a-1\right)^2}{\left(a+1\right)^2}\)
\(=\frac{2a+2}{\left(a-1\right)}\cdot\frac{\left(a-1\right)^2}{\left(a+1\right)^2}\)
\(=\frac{2\left(a+1\right)\cdot\left(a-1\right)}{\left(a+1\right)^2}\)
\(=\frac{2a-2}{a+1}\)
1)))))))
\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{2}{\sqrt{ab}}:\frac{\left(\sqrt{b}-\sqrt{a}\right)^2}{\left(\sqrt{ab}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{2}{\sqrt{ab}}.\frac{\left(\sqrt{ab}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{2\sqrt{ab}-a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)
\(\text{VT}=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)=\left(1+\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}.\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)
\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=\text{VP(điều phải chứng minh)}\)
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
\(P=\left(\frac{1}{a-1}+\frac{3\sqrt{a}+5}{a\left(\sqrt{a}-1\right)-\left(\sqrt{a}-1\right)}\right).\frac{\left(\sqrt{a}+1\right)^2}{4a}\)
\(=\left(\frac{\sqrt{a}-1}{\left(a-1\right)\left(\sqrt{a}-1\right)}+\frac{3\sqrt{a}+5}{\left(a-1\right)\left(\sqrt{a}-1\right)}\right).\frac{\left(\sqrt{a}+1\right)^2}{4\sqrt{a}}\)
\(=\left(\frac{4\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)^2}\right).\frac{\left(\sqrt{a}+1\right)^2}{4\sqrt{a}}\)
\(=\frac{4}{\left(\sqrt{a}-1\right)^2}.\frac{\left(\sqrt{a}+1\right)^2}{4\sqrt{a}}=\frac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\)
Không rút gọn được nữa, chắc do bạn ghi sai đề
Ở đằng sau biểu thức là \(\left(\frac{\left(\sqrt{a}+1\right)^2}{4\sqrt{a}}-1\right)\) sẽ hợp lý hơn, khi đó sẽ rút gọn được