K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Gọi an là số miền do n đường thẳng thỏa bài toán sinh ra.

Xét nn đường thẳng d1,d2,.....,dn cắt nhau tạo thành an miền, đường thẳng dn+1 cắt tất cả các đường thẳng trên và bị n đường thẳng trên chia thành n+1 phần với mỗi miền đó sẽ tại ra một miền cũ và một miền mới.

Ta có an+1=an+n+1

Giải phương trình sai phân này ta được \(a_n=\frac{n^2+n+2}{2}\)tức là \(\frac{n^2+n+2}{2}\)miền.

19 tháng 8 2016

Gọi \(a_n\) là số miền do \(n\) đường thẳng ( giả thiết ) chia ra .

Xét \(n\) đường thẳng \(d_1;\) \(d_2;...\)\(;d_{n-1};\)\(d_n\)cắt nhau tạo thành \(a_n\) miền, đường thẳng \(d_{n+1}\) đi qua các đường thẳng trên và bị \(n\) đường thẳng nó đi qua chia thành \(n+1\) phần với mỗi miền đó sẽ tại ra một miền cũ và một miền mới.

Ta có :

\(a_{n+1}=a_n+\left(n+1\right)\)

Giải phương trình sai phân này ta được \(a_n=\frac{n^2+n+2}{2}\)tức \(\frac{n^2+n+2}{2}\)miền.

Số phát biểu đúng 1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho 2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy 3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường...
Đọc tiếp

Số phát biểu đúng

1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho

2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy

3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường thẳng đó hoặc trùng với một trong 2 đường thẳng đó

4.     2 đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau

5.     Nếu đường thẳng d không nằm trong mặt phẳng ( ) và d song song với đường thẳng d’ nằm trong ( ) thì d song song với ( )

6.     Cho đường thẳng a song song với mặt phẳng . Nếu mặt phẳng  chứa a và cắt  theo giao tuyến b thì b song song với a

7.     Nếu 2 mặt phẳng cùng song song với 1 đường thẳng thì giao tuyến của chúng ( nếu có ) cũng song song với đường thẳng đó

     8. Cho 2 đường thẳng chéo nhau. Có vô số mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.

A. 8

B. 7

C. 6

D. 5

1
5 tháng 2 2018

Đáp án C

2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau

8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia

30 tháng 5 2018

Gọi I = d1 ∩ d2; (P) là mặt phẳng chứa (d1) và (d2).

Gọi d3 ∩ d1 = M; d3 ∩ d2 = N.

+ M ∈ d1, mà d1 ⊂ (P) ⇒ M ∈ (P)

+ N ∈ d2, mà d2 ⊂ (P) ⇒ N ∈ (P).

Nếu M ≠ N ⇒ d3 có hai điểm M, N cùng thuộc (P)

⇒ d3 ⊂ (P)

⇒ d1; d2; d3 đồng phẳng (trái với giả thiết).

⇒ M ≡ N

⇒ M ≡ N ≡ I

Vậy d1; d2; d3 đồng quy.