Cho hình thang ABCD ( AB // CD ) . Phân giác góc A và góc D cắt nhau tại I. Phân giác của góc B và góc C cắt nhau tại J. Gọi H là trung điểm của AD. K trung điểm của BC. Cho biết AB = AD = 10 cm ; BC = 12 cm ; CD = 20 cm. Tính độ dàu các đoạn HI, IJ , JK.
Lâu lắm ms post 1 bài lên :) Mog các bác giúp hộ "^" Con camon nhiều :3
+) Ta có: \(\widehat{BAI}=\widehat{DAI}=\frac{1}{2}\widehat{BAD}\)( AI là phân giác \(\widehat{BAD}\))
\(\widehat{ADI}=\widehat{CDI}=\frac{1}{2}\widehat{ADC}\)(1)
=> \(\widehat{ADI}+\widehat{DAI}=\frac{1}{2}\widehat{ADC}+\frac{1}{2}\widehat{BAD}=\frac{1}{2}\left(\widehat{ADC}+\widehat{BAD}\right)=\frac{1}{2}.180^o=90^o\)
Xét \(\Delta\)AID có: \(\widehat{ADI}+\widehat{DAI}=90^o\)=> \(\widehat{AID}=90^o\)
=> \(\Delta\) AID vuông tại I; có H là trung điểm AD => \(HI=\frac{1}{2}AD=AI=ID\Rightarrow HI=\frac{10}{2}=5cm\)
Tương tự ta chứng minh được:
\(\Delta\)BJC vuông tại J; có K là trung điểm BC => \(JK=\frac{1}{2}AC=BK=KC\Rightarrow JK=\frac{12}{2}=6cm\)
+) Xét hình thang ABCD có: HK là đường trung bình
=> HK//DC (i)
và \(HK=\frac{1}{2}\left(AB+DC\right)=15\left(cm\right)\)
+) Xét tam giác HDI có HD=HI => Tam giác HDI cân tại H => ^HDI=^HDI (2)
Từ (1) , (2) => ^HID =^CDI mà hai góc ở vị trí so le trong => HI//DC (ii)
Tương tự chứng minh được KJ//DC (iii)
Từ (i); (ii); (iii) => H; I; J; K thẳng hàng => \(IJ=HK-HI-JK=15-5-6=4\left(cm\right)\)
Dạ :3 Con cảm ơn cô ạ :)