So sánh 2 số:
x = \(\frac{2004}{2003}\) và y = \(\frac{2003}{2002}\)
Các bạn giúp mình nhé, mình đang gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{3004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(\Rightarrow P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)
\(\Rightarrow P=\frac{3}{15}-\frac{10}{15}\)
\(\Rightarrow P=\frac{-7}{15}\)
Vậy \(P=\frac{-7}{15}\)
D = \(\frac{2^{2004}+1}{2^{2003}+1}\)=\(\frac{2^{2003}+2}{2^{2004}+2}\)
C = \(\frac{2^{2005}+3}{2^{2006}+3}\)= \(\frac{2^{2005}+2}{2^{2006}+2}\)
Vậy C>D
mình chuyển 1 hạng tử của 3 từ bên d sang c nên ta được pt như trên
Ta có 2004/2003 = 2003+ 1/ 2003 = 1 + 1/2003
2003/2002= 2002 + 1/ 2002 = 1+ 1/2002
Do 1/2003 < 1/2002 => 1 + 1/2003 < 1+ 1/2002 hay 2004/2003 < 2003/2002
\(\frac{2004}{2003}\)= 1,0004992
\(\frac{2003}{2002}\)= 1,0004995
Vậy ,\(\frac{2003}{2002}\)lớn hơn \(\frac{2004}{2003}\).
1) Áp dụng BĐT \(\frac{a}{b}>\frac{a-m}{b-m}\) với \(\frac{a}{b}< 1\) .Dễ dàng chứng minh Bđt trên, áp dụng vào ta có:
a) \(x=\frac{2002}{2003}=\frac{2002-1+1}{2003-1+1}=\frac{2003-1}{2004-1}< \frac{2003}{2004}\)
Với \(\frac{a}{b}=\frac{2003}{2004};\frac{a-m}{b-m}=\frac{2003-1}{2004-1}\)
Từ đó ta có: x < y
b) Vì đây là phân số âm nên bé hơn phân số dương nên ta có BĐT: \(\frac{a}{b}>\frac{c}{d}\Leftrightarrow\frac{-a}{b}< \frac{-c}{d}\)
Áp dụng vào bài toán trên với \(\frac{a}{b}=\frac{2002}{2003}< 1\)và \(\frac{c}{d}=\frac{2005}{2004}>1\)
Nên \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{-a}{b}>\frac{-c}{d}\)hay x > y
Bài 1 :
a, Ta có : \(x=\frac{2002}{2003}=1-\frac{1}{2003}\)
\(y=\frac{2003}{2004}=1-\frac{1}{2004}\)
Vì \(\frac{1}{2003}>\frac{1}{2004}\)
\(\Rightarrow1-\frac{1}{2003}< 1-\frac{1}{2004}\)
\(\Rightarrow x< y\)
b, Ta thấy cả 2 vế đều có dấu âm nên ta rút gọn dấu âm đi thì được :
\(x=\frac{2002}{2003}\) \(y=\frac{2005}{2004}\)
Lúc này :
Ta có : \(y=\frac{2005}{2004}>1=\frac{2003}{2003}>\frac{2002}{2003}=x\)
Vì khi so sánh dương sẽ đối ngược với so sánh âm :
\(\Rightarrow\)Khi trả lại dấu âm thì tất nhiên \(x=\frac{-2002}{2003}>y=\frac{2005}{-2004}\)
Vậy \(x>y\)
Bài 2 :
Ta quy đồng các phân số trên như sau :
\(\frac{-2}{7}=\frac{-6}{21}\) \(\frac{-2}{9}=\frac{-6}{27}\)
Gọi các phân số thỏa mãn điều kiện trên là x .
Ta có : \(\frac{-6}{21}< x< \frac{-6}{27}\)
\(\Rightarrow x\in\left\{\frac{-6}{22};\frac{-6}{23};\frac{-6}{24};\frac{-6}{25};\frac{-6}{26}\right\}\)
Ta rút gọn và dấu của các phân số như sau ( nếu không rút gọn được thì cúng đừng chuyển dấu ) :
\(x\in\left\{\frac{3}{-11};\frac{-6}{23};\frac{3}{-12};\frac{-6}{25};\frac{3}{-13}\right\}\)
Vậy các phân số thỏa mãn đề bài là : \(\frac{3}{-11};\frac{3}{-12};\frac{3}{-13}\).
a) ta thay 1-2002/2003= 1/2003 va 1-2003/2004=1/2004
ma 1/2003>1/2004 =>2002/2003<2003/2004
b) ta co -2002/2003<1<2005/2004
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
(tạm trình bày vậy vì phần đánh văn bản còn yếu, bạn hểu và trình bày đúng lại giúp mình nhé)
A:
20032003+1=20032002.2003+1=20032002+1
20032004+1=20032002.2003.2003+1=20032002.2003+1(loại số 2003 thứ hai của cả mẫu số và tử số)
B:
20032002+1=20032002+1
20032003+1=20032002.2003+1
Suy ra: A=B
\(A=\frac{2003^{2003}+1}{2003^{2004}+1}< \frac{2003^{2003}+1+2002}{2003^{2004}+1+2002}\)
\(=\frac{2003^{2003}+2003}{2003^{2004}+2003}=\frac{2003\left(2003^{2002}+1\right)}{2003\left(2003^{2003}+1\right)}=\frac{2003^{2002}+1}{2003^{2003}+1}=B\)
\(\Rightarrow A< B\)
2004.2003=412008
2003.2003= 412009
\(\Rightarrow\frac{2004}{2003}< \frac{2003}{2002}\Leftrightarrow x< y.\)