Giải giúp mình bài toán này nhé :
\(\frac{5}{1x7}+\frac{5}{7x13}+\frac{5}{13x19}+...+\frac{5}{91x97}\)
Nhờ các bạn giúp mình nhé ! Ai nhanh mình tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4/5+3/7.x=1/3
3/7.x=1/3-4/5
3/7.x= -7/15
x= -7/15:3/7
x= -49/45
vay x= -49/45
\(\frac{3}{7}.x=\frac{1}{3}-\frac{4}{5}=-\frac{7}{15}\)
\(x=-\frac{7}{15}:\frac{3}{7}=-\frac{49}{75}\)
Bài 1 :
36/1212 = 3/101
13/1313 = 1/101
3/101 + 1/101 = 4/101
Vậy 36/1212 + 13/1313 = 4/101.
Bài 2 :
A = 5/13 + 1/2 + -5/9 + -3/6 + 4/-9
A = 5/13 + 1/2 + -5/9 + -1/2 + -4/9
A = (1/2 + -1/2) + (-5/9 + -4/9) + 5/13
A = 0 + (-1) + 5/13
A = (-1) + 5/13 = -13/13 + 5/13 = 8/13.
Chúc bạn học giỏi nhé.
Đặt \(A=\frac{1}{5}+\frac{1}{5^3}+...+\frac{1}{5^{101}}\)
\(\Rightarrow25A=5+\frac{1}{5}+\frac{1}{5^3}+...+\frac{1}{5^{99}}\)
\(\Rightarrow25A-A=\left(5+\frac{1}{5}+\frac{1}{5^3}+...+\frac{1}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^3}+\frac{1}{5^5}+...+\frac{1}{5^{101}}\right)\)
hay \(24A=5-\frac{1}{5^{101}}\)
\(\Rightarrow A=\frac{5-\frac{1}{5^{101}}}{24}\)
\(\Rightarrow A:\left(1-\frac{1}{5^{102}}\right)=\frac{5-\frac{1}{5^{101}}}{24}.\frac{1}{1-\frac{1}{5^{102}}}\)
\(=\frac{5\left(1-\frac{1}{5^{102}}\right)}{24}.\frac{1}{1-\frac{1}{5^{102}}}=\frac{5}{24}\)
\(8\frac{4}{17}-\left(2\frac{5}{9}+3\frac{4}{17}\right)=\frac{140}{17}-\left(\frac{23}{9}+\frac{55}{17}\right)=\frac{140}{17}-\frac{886}{153}=\frac{22}{9}=2,444444444444\)
Ta có:
\(\frac{5}{1\cdot7}+\frac{5}{7\cdot13}+\frac{5}{13\cdot19}+...+\frac{5}{91\cdot97}\)
= \(5\cdot\frac{1}{6}\cdot\left(\frac{6}{1\cdot7}+\frac{6}{7\cdot13}+\frac{6}{13\cdot19}+...+\frac{6}{91\cdot97}\right)\)
= \(\frac{5}{6}\cdot\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+...+\frac{1}{91}-\frac{1}{97}\right)\)
= \(\frac{5}{6}\cdot\left(1-\frac{1}{97}\right)\)
= \(\frac{5}{6}\cdot\frac{96}{97}\)
= \(\frac{80}{97}\)
5/1.7 + 5/7.13 + 5/13.19 + ... + 5/91.97
= 5/6.(1 - 1/7 + 1/7 - 1/13 + 1/13 - 1/19 + ... + 1/91 - 1/97)
= 5/6.(1 - 1/97)
= 5/6.96/97
= 80/97