K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

Để \(\sqrt{-5x}\) có nghĩa thì:

-5x ≤0

⇒x≤0

Chọn d

30 tháng 5 2018

28 tháng 11 2018

1: ĐKXĐ: \(a\ge0\)

1 tháng 7 2017

\(\sqrt{ }\){\(\frac{ }{ }\){-3}{4-5x}} có nghĩa khi và chỉ khi

4-5x>0

<=>-5x>-4

<=>x<0,8

1 tháng 7 2017

Có nghĩa <=> -3/4-5x > 0

Vì -3<0 nên 4-5x<0 <=> -5x<-4 <=> x>4/5

Và 4-5x khác 0 <=> -5x khác -4 <=> x khác 4/5 

=> x>4/5 và x khác 4/5

16 tháng 7 2018

Để Giá trị của x có nghĩa thì:

\(\sqrt{x^2-5x+6}>0\) => \(x^2-5x+6>0\)

Phân tích Mẫu Thức ta có:

\(\sqrt{x^2-5x+6}=\sqrt{x^2-2x-3x+6}=\sqrt{\left(x^2-2x\right)-\left(3x-6\right)}\)

\(=\sqrt[]{x\left(x-2\right)-3\left(x-2\right)}=\sqrt{\left(x-2\right)\left(x-3\right)}\) 

Để mẫu thức khác 0 thì :

\(\left(x-2\right)\ne0\) hoặc \(\left(x-3\right)\ne0\)

\(\Leftrightarrow\) \(x\ne2\)hoặc \(x\ne3\)(1)

Để mẫu thức ko âm ( lớn hơn 0 )

*Trường hợp 1: \(x-2>0\)hoặc \(x-3>0\)

=> \(x>2\)hoặc \(x>3\)(2)

*Trường hợp 2: \(x-2< 0\)hoặc \(x-3< 0\)

=> \(x< 2\)hoặc \(x< 3\)(3)

Từ (1),(2) và (3) ta có:

=> \(x>3\) hoặc \(x< 2\)

Chúc bạn học tốt :#

16 tháng 7 2018

ĐK:  \(x^2-5x+6>0\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(x-3\right)>0\)

TH1:  \(\hept{\begin{cases}x-2>0\\x-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>2\\x>3\end{cases}}\)\(\Leftrightarrow\)\(x>3\)

TH2:   \(\hept{\begin{cases}x-2< 0\\x-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 2\\x< 3\end{cases}}\)\(\Leftrightarrow\)\(x< 2\)

Vậy   \(\orbr{\begin{cases}x>3\\x< 2\end{cases}}\)

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge6\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(-1\le x\le1\)

c: ĐKXĐ: \(x\le-2\)

4 tháng 9 2021

chị giỏi quá

4 tháng 7 2021

\(\sqrt{\left(3-5x\right)\left(x-6\right)}\ge0\)

\(< =>TH1:3-5x\ge0;x-6\ge0\)

\(\hept{\begin{cases}3-5x\ge0\\x-6\ge0\end{cases}\hept{\begin{cases}x\le\frac{3}{5}\\x\ge6\end{cases}}}\)pt vô nghiệm

\(TH2:3-5x< 0;x-6< 0\)

\(\hept{\begin{cases}3-5x< 0\\x-6< 0\end{cases}\hept{\begin{cases}x>\frac{3}{5}\\x< 6\end{cases}}}\)

để căn thức đxđ thì\(\frac{3}{5}< x< 6\)

\(\sqrt{\left(3-5x\right)\left(x-6\right)}\) có nghĩa \(\Leftrightarrow\left(3-5x\right)\left(x-5\right)\ge0\)

                                                             \(\Leftrightarrow\hept{\begin{cases}3-5x\ge0\\x-6\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}3-5x\le0\\x-6\le0\end{cases}}\)

                                                             \(\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{5}\\x\ge6\end{cases}}\)(vô lí)           Hoặc \(\hept{\begin{cases}x\ge\frac{3}{5}\\x\le6\end{cases}}\)

                                                             \(\Leftrightarrow\frac{3}{5}\le x\le6\)

6 tháng 4 2018

19 tháng 2 2020

\(\sqrt{2020}+\sqrt{-\frac{3}{x+3}}\)

Căn thức trên có nghĩa khi:\(\hept{\begin{cases}x+3\ne0\\-\frac{3}{x+3}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x< -3\end{cases}}}}\)

\(\Rightarrow x< -3\)