so sánh : A với 1 biết A = 22019 - ( 22018 + 2 2017 +....... + 21 + 20)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+...+2^{2018}\)
\(2A=2+2^3+2^4+...+2^{2019}\)
\(A=2A-A=1-2^{2019}\)
\(B-A=2^{2019}-\left(1-2^{2019}\right)\)
\(B-A=2^{2019}-1+2^{2019}\)
\(B-A=1\)
`#3107`
\(A=1+2+2^2+2^3+...+2^{2018}\) và \(B=2^{2019}\)
Ta có:
\(A=1+2+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+2^3+...+2^{2019}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)
\(A=2+2^2+2^3+...+2^{2019}-1-2-2^2-2^3-...-2^{2018}\)
\(A=2^{2019}-1\)
Vậy, \(A=2^{2019}-1\)
Ta có:
\(B-A=2^{2019}-2^{2019}+1=1\)
Vậy, `B - A = 1.`
a,(2x+1)(y-3)=12
⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 |
y-3 | 12 | -12 | 6 | -6 | 4 | -4 |
x | 0 | -1 | 1212 | −32−32 | 1 | -2 |
y | 15 | -9 | 9 | 3 | 7 | -1 |
=>x=0,y=15
c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)
\(25^{36}=\left(5^2\right)^{36}=5^{72}\)
Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)
mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)
nên \(6^{50}< 5^{70}\)
mà \(5^{70}< 5^{72}\)
nên \(6^{50}< 5^{72}\)
hay \(36^{25}< 25^{36}\)
a/
Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12.
$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$
Nếu $2x+1=1\Rightarrow y-3=12$
$\Rightarrow x=0; y=15$
Nếu $2x+1=3\Rightarrow y-3=4$
$\Rightarrow x=1; y=7$
Vậy...........
b/
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$
$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)
Lấy (2) trừ (1) theo vế thì:
$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$
$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$
$2^x(2^{2016}-1)=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
Ta có :
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{19}\right).\left(1-\frac{1}{20}\right)\)
\(=\)\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{18}{19}.\frac{19}{20}\)
\(=\)\(\frac{1.2.3.....18.19}{2.3.4.....19.20}\)
\(=\)\(\frac{1}{20}\)
Vì \(\frac{1}{20}>\frac{1}{21}\)nên \(A>\frac{1}{21}\)
Vậy \(A>\frac{1}{21}\)
a/ 3^21 > 2^31
b/ 2017^10 + 2017^9 <2018^10
chọn mình nha . Mình cũng học lớp 6 đó (>-<)
Ta dễ dàng nhận thấy :
\(1^2>0;3^2>2^2;5^2>4^2;...;21^2>20^2\)
Cộng theo vế ta được :
\(1^2+3^2+5^2+...+21^2>0+2^2+4^2+...+20^2\)
Hay \(A>B\)
Ta có:A có số số hạng là:(21-1):2+1=11(số số hạng)
B có số số hạng là:(20-2):2+1=10(số số hạng)
Khi đó ta có:\(B-A=\left(2^2+4^2+...+20^2\right)-\left(1^2+3^2+...+21^2\right)\)
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(20^2-19^2\right)-21^2\)
\(=\left(1+2\right)\left(2-1\right)+\left(3+4\right)\left(4-3\right)+...+\left(19+20\right)\left(20-19\right)-21^2\)
\(=1+2+3+4+...+19+20-21^2=\frac{\left(1+20\right)20}{2}-21^2=21.10-21^2< 21^2-21^2=0\)
\(\Rightarrow B-A< 0\Rightarrow B< A\)
Vậy B<A
A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰
⇒ 2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹
⇒ A = 2A - A = (2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰)
= 2²⁰¹¹ - 2⁰
= 2²⁰¹¹ - 1
= B
Vậy A = B
A = 22019 - (22018 + 22017 +.....+ 21 + 20)
Đặt A1 = 22018 + 22017 +.....+ 21 + 20
⇒ 2A1 = 22019 + 22018 +.....+ 22 + 21
⇒ 2A1 - A1 = 22019 + 22018 +.....+ 22 + 21
- (22018 + 22017 +.....+ 21 + 20)
⇒ A1 = 22019 - 20
⇒ A = 22019 - A1
= 22019 -(22019 - 20)
= 22019 - 22019 + 1 = 1
vậy A = 1
THANK YOU VERY MUCH
GOODBYE