K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2019

A = 22019 - (22018 + 22017 +.....+ 21 + 20)

Đặt A1 = 22018 + 22017 +.....+ 21 + 20

⇒ 2A1 = 22019 + 22018 +.....+ 22 + 21

⇒ 2A1 - A1 = 22019 + 22018 +.....+ 22 + 21

- (22018 + 22017 +.....+ 21 + 20)

⇒ A1 = 22019 - 20

⇒ A = 22019 - A1

= 22019 -(22019 - 20)

= 22019 - 22019 + 1 = 1

vậy A = 1

18 tháng 10 2019

THANK YOU VERY MUCH

GOODBYE

19 tháng 12 2021

\(M=2^{2020}-2^{2020}+1=1\)

19 tháng 12 2021

\(M=2^{2020}-2^{2020}+1=1\)

19 tháng 12 2021

GHI RÕ CÁCH LÀM LUÔN ĐC KO Ạ

21 tháng 9 2023

\(A=1+2+2^2+...+2^{2018}\)

\(2A=2+2^3+2^4+...+2^{2019}\)

\(A=2A-A=1-2^{2019}\)

\(B-A=2^{2019}-\left(1-2^{2019}\right)\)

\(B-A=2^{2019}-1+2^{2019}\)

\(B-A=1\)

`#3107`

\(A=1+2+2^2+2^3+...+2^{2018}\) và \(B=2^{2019}\)

Ta có:

\(A=1+2+2^2+2^3+...+2^{2018}\)

\(2A=2+2^2+2^3+...+2^{2019}\)

\(2A-A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)

\(A=2+2^2+2^3+...+2^{2019}-1-2-2^2-2^3-...-2^{2018}\)

\(A=2^{2019}-1\)

Vậy, \(A=2^{2019}-1\)

Ta có:

\(B-A=2^{2019}-2^{2019}+1=1\)

Vậy, `B - A = 1.`

a,(2x+1)(y-3)=12

⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}

2x+11-12-23-3
y-312-126-64-4
x0-11212−32−321-2
y15-9937-1

=>x=0,y=15

 

c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)

\(25^{36}=\left(5^2\right)^{36}=5^{72}\)

Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)

mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)

nên \(6^{50}< 5^{70}\)

mà \(5^{70}< 5^{72}\)

nên \(6^{50}< 5^{72}\)

hay \(36^{25}< 25^{36}\)

AH
Akai Haruma
Giáo viên
28 tháng 1 2024

a/

Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12. 

$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$

Nếu $2x+1=1\Rightarrow y-3=12$

$\Rightarrow x=0; y=15$

Nếu $2x+1=3\Rightarrow y-3=4$

$\Rightarrow x=1; y=7$ 

Vậy...........

AH
Akai Haruma
Giáo viên
28 tháng 1 2024

b/

$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$

$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)

Lấy (2) trừ (1) theo vế thì:

$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$

$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$

$2^x(2^{2016}-1)=2^3(2^{2016}-1)$

$\Rightarrow 2^x=2^3$

$\Rightarrow x=3$

1 tháng 2 2018

Ta có :

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{19}\right).\left(1-\frac{1}{20}\right)\)

\(=\)\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{18}{19}.\frac{19}{20}\)

\(=\)\(\frac{1.2.3.....18.19}{2.3.4.....19.20}\)

\(=\)\(\frac{1}{20}\)

Vì \(\frac{1}{20}>\frac{1}{21}\)nên \(A>\frac{1}{21}\)

Vậy \(A>\frac{1}{21}\)

29 tháng 10 2017

a/   3^21 > 2^31

b/   2017^10 +  2017^9  <2018^10

chọn mình nha . Mình cũng học lớp 6 đó (>-<)

10 tháng 8 2020

Ta dễ dàng nhận thấy : 

\(1^2>0;3^2>2^2;5^2>4^2;...;21^2>20^2\)

Cộng theo vế ta được :

 \(1^2+3^2+5^2+...+21^2>0+2^2+4^2+...+20^2\)

Hay \(A>B\)

Ta có:A có số số hạng là:(21-1):2+1=11(số số hạng)

         B có số số hạng là:(20-2):2+1=10(số số hạng)

Khi đó ta có:\(B-A=\left(2^2+4^2+...+20^2\right)-\left(1^2+3^2+...+21^2\right)\)

\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(20^2-19^2\right)-21^2\)

\(=\left(1+2\right)\left(2-1\right)+\left(3+4\right)\left(4-3\right)+...+\left(19+20\right)\left(20-19\right)-21^2\)

\(=1+2+3+4+...+19+20-21^2=\frac{\left(1+20\right)20}{2}-21^2=21.10-21^2< 21^2-21^2=0\)

\(\Rightarrow B-A< 0\Rightarrow B< A\)

                               Vậy B<A   

14 tháng 11 2023

A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰

⇒ 2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹

⇒ A = 2A - A = (2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰)

= 2²⁰¹¹ - 2⁰

= 2²⁰¹¹ - 1

= B

Vậy A = B

30 tháng 10 2024

BÀI BẠN GIỐNG Y CHANG BÀI MIK LUÔN