K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

Câu b) bạn tham khảo tại đây nhé: Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath.

Chúc bạn học tốt!

19 tháng 8 2019

a)

Có: \(\left|x-2017\right|\ge0\forall x\in Q\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-2017\right|+2018\ge2018\forall x\in Q\\\left|x-2017\right|+2019\ge2019\forall x\in Q\end{matrix}\right.\)

\(\Rightarrow\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\ge\frac{2018}{2019}\forall x\in Q\\ \Rightarrow C\ge\frac{2018}{2019}\forall x\in Q\)

Vậy GTNN của C = \(\frac{2018}{2019}\)

\("="\Leftrightarrow\left|x-2017\right|=0\\ \Leftrightarrow x-2017=0\\ \Leftrightarrow x=2017\)

b) Có: \(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)

\(\Leftrightarrow S=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{n^2-1}{n^2}\\ \Leftrightarrow S=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{n^2-1}{n^2}\\ \Leftrightarrow S=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\\ \Leftrightarrow S=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Ta thấy từ 2 đến n có n-1 số hạng

\(\Rightarrow S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\left(1\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{\left(n-1\right)\cdot n}\\ \Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\\ \Rightarrow A< 1-\frac{1}{n}< 1\)

\(\Rightarrow S=n-1-A>n-1-1=n-2\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow n-2< S< n-1\)

\(n\in N;n>2\)

\(\Rightarrow S\notin N\left(đpcm\right)\)

11 tháng 3 2022

\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)

\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)

\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)

\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)

\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)

12 tháng 3 2018

hình như cái này đâu phải toán lớp 5 đâu bạn

12 tháng 3 2018

nhầm toán lớp 6

29 tháng 10 2019

A = | x - 2015 | +| x - 2016 | 

A = | x - 2015 | + | 2016 - x | 

A = | x - 2015 | + | 2016 - x | \(\ge\)| x - 2015 + 2016 - x |

A = | x - 2015 | + | 2016 - x | \(\ge\)1

Dấu = xảy ra\(\Leftrightarrow\)x - 2015 = 0 ; 2016 - x = 0

                       \(\Rightarrow\)x = 2015 hoặc x = 2016

Min A = 1 \(\Leftrightarrow\)x = 2015 hoặc x = 2016

29 tháng 10 2019

Bạn làm đc câu b ko

28 tháng 3 2019

Câu 1

a) A=2018!.(2019 - 1 -2018)

=2018!.0

= 0

vậy A= 0

b)\(B=\left(1-\frac{1}{9}+1-\frac{2}{10}+1+\frac{3}{11}+...+1-\frac{150}{158}\right):\left(\frac{1}{4}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{158}\right)\right)\)

\(=\left(\frac{8}{9}+\frac{8}{10}+...+\frac{8}{158}\right):\left(\frac{1}{4}\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{158}\right)\right)\)

\(=8.\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{158}\right):\left(\frac{1}{4}\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{158}\right)\right)\)

\(=8:\frac{1}{4}\)

=32

Vậy B= 32