\(cm:\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}-\sqrt{2}=\sqrt{2}.\left(\sqrt{5}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) Đặt VT = A
<=> \(2\sqrt{2}A=\left(8+2\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)
<=> \(2\sqrt{2}A=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
<=> \(2A=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^2\)
<=> 2A = \(\left(5-3\right)^2=4\)
<=> A = 2
b) Đặt VT = B
<=> \(2\sqrt{2}B=\left(10+2\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right)\sqrt{10-2\sqrt{21}}\)
<=> \(2\sqrt{2}B=\left(\sqrt{7}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
<=> \(2B=\left(\sqrt{7}+\sqrt{3}\right)^2.\left(\sqrt{7}-\sqrt{3}\right)^2=\left(7-3\right)^2=16\)
<=> B = 8
Bài 2
Đặt VT = A
<=> A2 = \(\dfrac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{2}\)
<=> A2 = \(\dfrac{2\sqrt{5}+2\sqrt{5-4}}{2}=\dfrac{2\sqrt{5}+2}{2}=\sqrt{5}+1\)
<=> \(A=\sqrt{\sqrt{5}+1}\)
\(A=\left|2-\sqrt{3}\right|+\left|1+\sqrt{3}\right|=2-\sqrt{3}+1+\sqrt{3}=3\)
\(B=\left|4-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=4-\sqrt{5}-\sqrt{5}+2=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)
\(C=\left|1-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=\sqrt{5}-1-\sqrt{5}+2=1\)
\(A=\left|2-\sqrt{3}\right|+\left|1+\sqrt{3}\right|=2-\sqrt{3}+1+\sqrt{3}=3\)
\(B=\left|4-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=4-\sqrt{5}-\sqrt{5}+2=6-2\sqrt{5}\)
C=\(\left|1-\sqrt{5}\right|-\left|2-\sqrt{5}\right|=\sqrt{5}-1-\sqrt{5}+2=1\)
\(1,=20-7=13\\ b,=12-50=-38\\ c,=\sqrt{7}-2+\sqrt{7}+2=2\sqrt{7}\\ d,=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\\ e,=11+2\sqrt{30}\\ f,=8-2\sqrt{15}\\ g,=11+2\sqrt{6}\)
1) \(=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)
2) \(=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)
3) \(=\sqrt{7}-2+\sqrt{7}+2=2\sqrt[]{7}\)
4) \(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\)
5) \(=5+6-2\sqrt{5.6}=11-2\sqrt{30}\)
6) \(=3+5-2\sqrt{3.5}=8-4\sqrt{2}\)
7) \(=\left(2\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+2\sqrt{2\sqrt{2}.3}=11+2\sqrt{6\sqrt{2}}\)
e) Ta có: \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{2}+1-\sqrt{2}+1\)
=2
\(c,\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+5\sqrt{3}+5\left(5-\sqrt{3}\right)}\)
\(=\sqrt{4+5\sqrt{3}+25-5\sqrt{3}}\)
\(=\sqrt{29}\)
a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{5+2\sqrt{6}}\)
\(=\left|\sqrt{3}-2\right|+\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{3}\)
b) \(\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}-\sqrt{2}\)
\(=\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\sqrt{2}\)
\(=\sqrt{2}-\sqrt{2}\)
\(=0\)
c) \(\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\cdot\left(2+\dfrac{5-3\sqrt{5}}{3-\sqrt{5}}\right)\)
\(=\left[2-\dfrac{\sqrt{5}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}\right]\cdot\left[2-\dfrac{\sqrt{5}\left(3-\sqrt{5}\right)}{3-\sqrt{5}}\right]\)
\(=\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)\)
\(=4-4\sqrt{5}+5\)
\(=9-4\sqrt{5}\)
d) \(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)
\(=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{6-4}-\dfrac{12\left(3+\sqrt{6}\right)}{9-6}\right]\left(\sqrt{6}+11\right)\)
\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)
\(=6-121\)
\(=-115\)
g: \(=\left(-\sqrt{5}-2\right)\left(\sqrt{5}-2\right)\)
=-(căn 5+2)(căn 5-2)
=-(5-4)=-1
h: \(=\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\dfrac{\sqrt{30}}{3}\right)\left(\dfrac{\sqrt{30}}{5}+\sqrt{2}-\dfrac{4}{5}\sqrt{5}\right)\)
=4/5*căn 10+4/3*căn 6-16/15*căn 15+2/5*căn 15+2-4/5*căn 10+30/15+2/3*căn 15-4/3*căn 6
=4
a) Ta có: \(A=\sqrt{20}-10\sqrt{\dfrac{1}{5}}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\sqrt{5}-2\sqrt{5}+\sqrt{5}-1\)
\(=\sqrt{5}-1\)
b) Ta có: \(B=2\sqrt{32}+5\sqrt{8}-4\sqrt{32}\)
\(=8\sqrt{2}+10\sqrt{2}-16\sqrt{2}\)
\(=2\sqrt{2}\)
Đặt \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(A^2=3+\sqrt{5}+2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+3-\sqrt{5}\)
\(A^2=6+2\sqrt{9+3\sqrt{5}-3\sqrt{5}-5}\)
\(A^2=6+2\sqrt{9-5}=6+4=10\)
\(A=\sqrt{10}\)
Thay vào biểu thức
\(\Rightarrow\sqrt{10}-\sqrt{2}=\sqrt{2}\left(\sqrt{5}-1\right)=VP\)