cho xoy khac goc bet . tren tia ox va oy lay 2 diem A va B sao cho OA=OB. I la trung diem cua doan thang AB. Chứng minh OI là phân giác của góc xOy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác OBC và ODA có: góc O chung, OA=OC, OB=OD => 2 tam giác bằng nhau (c.g.c) => AD=BC.
b,ta có: BA=CD (1), từ câu a => góc OBC =góc ODA (2) và góc OAD =góc OCB => góc BAE = góc DCE (3). từ (1),(2),(3) => tam giác EAB=ECD.
c,tam giác EAB=ECD => BE=CD
xet tam giác OBE và ODE có OB=OD,EB=ED và (2) =>tam giác OBE=ODE =>góc BOE =góc DOE => OE là phân giác xOy.
Xet tam giac AOC va BOC co
OA=OB
chung OC
AC=BC (cùng ban kinh)
tam giac AOC=AOB(c.c.c)
goc AOC=BOC
OClà tia pg của goc xOy
Hình tự vẽ nha
a: Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
b: Xét ΔOAC và ΔOBD có
\(\widehat{AOC}\) chung
OA=OB
\(\widehat{OAC}=\widehat{OBD}\)
Do đó; ΔOAC=ΔOBD
Suy ra: AC=BD
a) Xét ΔMAO vuông tại A và ΔNBO vuông tại B có:
OA = OB (GT)
góc O chung
=> ΔMAO = ΔNBO (cạnh huyền - góc nhọn)
=> OM = ON ( 2 cạnh tương ứng ) → đpcm
Ta có OA + AN = ON
OB + BM = OM
mà OM = ON ( cm trên ); OA = OB
=> AN = BM → đpcm
b) Xét ΔNOH và ΔMOH có;
ON = OM (cm trên)
OH chung
NH = MH (suy từ gt)
=> ΔNOH = ΔMOH (c.c.c)
=> góc NOH = MOH ( 2 góc tương ứng )
Do đó OH là tia pg của góc xOy → đpcm (1)
c) Vì ΔMAO = ΔNBO nên góc OMA = ONB (2 góc tương ứng) hay ANI = BMI.
Xét ΔNAI và ΔMBI có:
góc ANI = BMI (cm trên)
AN = BM ( câu a)
góc NAI = MBI (= 90 )
=> ΔNAI = ΔMBI ( g.c.g )
=> AI = BI (2 cạnh tương ứng)
Xét ΔAOI và ΔBOI có :
AI = BI (cm trên)
góc OAI = OBI (=90)
OI chung
=> ΔAOI = ΔBOI ( c.g.c )
=> góc AOI = BOI ( 2 góc tương ứng )
Do đó OI là tia pg của xOy (2)
Từ (1) ở câu b và (2) suy ra O, H, I thẳng hàng.
Chúc học tốt nguyen thi minh nguyet
a) Xét t/g OAM vuông tại A và t/g OBN vuông tại B có:
OA = OB (gt)
O là góc chung
Do đó, t/g OAM = t/g OBN ( cạnh góc vuông và góc nhọn kề)
=> AMO = BNO (2 góc tương ứng)
OM = ON (2 cạnh tương ứng) (1)
Lại có: OB = OA (gt)
=> OM - OB = ON - OA
=> BM = AN (2)
(1) và (2) là đpcm
b) Xét t/g HAN vuông tại A và t/g HBM vuông tại B có:
AN = BM (câu a)
ANH = BMH (câu a)
Do đó, t/g HAN = t/g HBM ( cạnh góc vuông và góc nhọn kề)
=> HN = HM (2 cạnh tương ứng)
Dễ dàng c/m t/g NOH = t/g MOH (c.c.c)
=> NOH = MOH (2 góc tương ứng)
=> OH là phân giác NOM hay OH là phân giác xOy (đpcm)
c) Dễ dàng c/m t/g NOI = t/g MOI (c.c.c)
=> NOI = MOI (2 góc tương ứng)
=> OI là phân giác NOM
Mà OH cũng là phân giác NOM
Nên O,H,I thẳng hàng (đpcm)
gọi I là trung điểm AD
xét tam giác ACD có EI là đường trung bình nên IE song song CD và bằng 1/2 CD
xét trường hợp 1 EF cắt OA tại K ko thuộc tia Ox và cắt Oy tại Q thuộc Oy
có EI song song CD nên IEF=FQD
tương tự ta có IN là đường trung bình tam giác ABD nên IF song song AB và bằng 1/2 AB
AB=CD nên IE=IF
tam giác IEF cân tại I
ta có IF song song AB nên IF song song OK
INK= KNI
IMN = NQD = OQK
nên tam giác OKQ cân tại O có Ot là phân giác góc ngoài tại O nên Ot song song KQ hay song song MN
trường hợp còn lại làm tương tị
chỗ Ot là phân giác ngoài ban tự chứng minh song song đi dễ mà