Rút gọn biểu thức
1)\(\frac{15}{3\sqrt{20}}\)
2) \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{2}-\sqrt{5}}\)
3) \(\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{6}+\sqrt{2}}\)
4) \(\sqrt{\frac{3}{20}}+\sqrt{\frac{1}{60}}-2\sqrt{\frac{1}{15}}\)
5) \(\left(\sqrt{20}-\sqrt{45}+\sqrt{5}\right)\sqrt{5}\)
6)\(\left(2+\sqrt{5}\right)^2-\left(2+\sqrt{5}\right)^2\)
7) \(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}+\sqrt{5}}\right):2\sqrt{5}\)
8)\(\frac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{1\frac{1}{3}}\)
9) \(2\sqrt{3}\left(2\sqrt{6}-\sqrt{3}+1\right)\)
10) \(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
11) \(\sqrt{\sqrt{10}+1}.\sqrt{\sqrt{10}-1}\)
12) \(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
13) \(\sqrt{\frac{3}{4}}+\sqrt{\frac{1}{3}}+\sqrt{\frac{1}{12}}\)
14) \(\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}\right)\sqrt{6}\)
15 ) \(\sqrt{\frac{4}{3}}+\sqrt{12}-\frac{4}{3}\sqrt{\frac{3}{4}}\)
16) \(\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)
17) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)
b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
a) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
\(=\frac{3\left(2-\sqrt{3}\right)}{2^2-3}+\frac{13\left(4+\sqrt{3}\right)}{4^2-3}+\frac{6\sqrt{3}}{3}\)
\(=3\left(2-\sqrt{3}\right)+\left(4+\sqrt{3}\right)+2\sqrt{3}\)
\(=3.2+4=6+4=10\)
b) \(=\left[\frac{\left(\sqrt{14}-\sqrt{7}\right)\left(\sqrt{2}+1\right)}{2-1}+\frac{\left(\sqrt{15}-\sqrt{5}\right)\left(\sqrt{3}+1\right)}{3-1}\right]:\frac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=2\) (nhân bung mấy cái trong ngoặc vuông ra, rút gọn)
c) Gợi ý: \(28-10\sqrt{3}=5^2-2.5.\sqrt{3}+\sqrt{3}=\left(5-\sqrt{3}\right)^2\)
d) \(=\frac{3\left(3-2\sqrt{3}\right)}{3^2-\left(2\sqrt{3}\right)^2}+\frac{3\left(3+2\sqrt{3}\right)}{3^2-\left(2\sqrt{3}\right)^2}=-6\)
e) Tự làm.
B=\(\frac{6-6\sqrt{3}}{1-\sqrt{3}}+\frac{3\sqrt{3}+3}{\sqrt{3}+1}=\frac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\frac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)
C=\(\frac{3+\sqrt{3}}{\sqrt{3}}+\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}=\frac{3\left(1+\sqrt{3}\right)}{\sqrt{3}}+\frac{\sqrt{3}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}=\sqrt{3}+1-\sqrt{3}=1\)
D=\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
E=\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\sqrt{3}+\frac{1}{2-\sqrt{3}}=\frac{2\sqrt{3}-1}{2-\sqrt{3}}\)
tu lam di cau nao kho thi hoi hoi vay ko ai tra loi cho dau
cau e)
\(A=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\)(suy ra A>=0)
\(A^2=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)
\(A^2=1\)
A=1
(bai toan co nhieu cach)
cau m)
\(=\frac{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{2}}\)
\(=1\)
cau G)
\(=\frac{5\sqrt{7}}{\sqrt{35}}-\frac{7\sqrt{5}}{\sqrt{35}}+\frac{2\sqrt{70}}{\sqrt{35}}\)
\(=\frac{5}{\sqrt{5}}-\frac{7}{\sqrt{7}}+2\sqrt{2}\)
\(=\sqrt{5}-\sqrt{7}+2\sqrt{2}\)
1/ \(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
=\(\frac{\left(\sqrt{15}-\sqrt{5}\right)\cdot\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+1\right)}+\frac{\left(5-2\sqrt{5}\right)\cdot\left(2\sqrt{5}+4\right)}{\left(2\sqrt{5}-4\right)\cdot\left(2\sqrt{5}+4\right)}\)
=\(\frac{2\sqrt{5}}{2}+\frac{2\sqrt{5}}{4}\)
=\(\sqrt{5}+\frac{\sqrt{5}}{2}\)
=\(\frac{3\sqrt{5}}{2}\)
2/\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
=\(\frac{\left(\sqrt{15}-\sqrt{12}\right)\cdot\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\cdot\left(\sqrt{5}+2\right)}+\frac{\left(6+2\sqrt{6}\right)\cdot\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+2\right)\cdot\left(\sqrt{3}-2\right)}\)
=\(\frac{\sqrt{3}}{1}+\frac{2\sqrt{3}}{1}\)
=\(3\sqrt{3}\)
3/\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
=\(\frac{\sqrt{3}\cdot\left(3+2\sqrt{3}\right)}{3}+\frac{\left(2+\sqrt{2}\right)\cdot\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\cdot\left(\sqrt{2}-1\right)}-\left(2+\sqrt{3}\right)\)
=\(\frac{6+3\sqrt{3}}{3}+\sqrt{2}-\left(2-\sqrt{3}\right)\)
=\(\frac{3\cdot\left(2+\sqrt{3}\right)}{3}+\sqrt{2}-\left(2+\sqrt{3}\right)\)
=\(2+\sqrt{3}+\sqrt{2}-2-\sqrt{3}\)
=\(\sqrt{2}\)
Câu số 4 bạn có chắc là đúng đề bài không ạ ? Xem lại đề giúp mình nhé, cảm ơn bạn ^^
*****~~~~~~~~~~*****
\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+\sqrt{6}}{\sqrt{6}+1}\)
\(=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\frac{\sqrt{6}\left(\sqrt{6}+1\right)}{\sqrt{6}+1}\)
\(=\sqrt{3}+\sqrt{6}\)
\(=\sqrt{3}\left(1+\sqrt{2}\right)\)
*****~~~~~~~~~~*****
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(=\sqrt{3}+2+\sqrt{2}\)
(Chúc bạn học tốt nha!)
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé