B1 Cho A=\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
Chứng minh A là một số nguyên
B2 Tính giá trị của biểu thức P=\(\frac{1+2x}{1+\sqrt{1+2x}}+\frac{1-2x}{1-\sqrt{1-2x}}\)với x=\(\frac{\sqrt{3}}{4}\)
LÀM ƠN GIÚP NHÉ CẢM ƠN TRC
B1.
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+4\sqrt{3}+1}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{2}.\sqrt{2+\sqrt{3}}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)
Vậy ...