SO SÁNH \(\frac{2013}{\sqrt{2012}}+\frac{2012}{\sqrt{2013}}\) VÀ \(\sqrt{2013}-\sqrt{2012}\)
MÌNH_ĐANG_CẦN
THANKS!!!!!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\frac{2012}{\sqrt{2013}}+\frac{2013}{\sqrt{2012}}=\frac{2013-1}{\sqrt{2013}}+\frac{2012+1}{\sqrt{2012}}\)
=>\(\frac{2013}{\sqrt{2013}}-\frac{1}{\sqrt{2013}}+\frac{2012}{\sqrt{2012}}+\frac{1}{\sqrt{2012}}\)
=>\(\sqrt{2013}-\frac{1}{\sqrt{2013}}+\sqrt{2012}+\frac{1}{\sqrt{2012}}\)
Mà \(\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}>0\)
Vậy \(\sqrt{2012}+\sqrt{2013}+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}>\sqrt{2012}+\sqrt{2013}\)
Hay \(\frac{2012}{\sqrt{2013}}+\frac{2013}{\sqrt{2012}}>\sqrt{2012}+\sqrt{2013}\)
= \(\frac{1}{\sqrt{2}\left(\sqrt{2}+1\right)}+\frac{1}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{1}{\sqrt{2012}.\sqrt{2013}\left(\sqrt{2013}+\sqrt{2012}\right)}\)
= \(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2\left(\sqrt{2}+1\right)}}+...+\frac{\left(\sqrt{2013}-\sqrt{2012}\right)\left(\sqrt{2013}+\sqrt{2012}\right)}{\sqrt{2012}\sqrt{2013}\left(\sqrt{2012}+\sqrt{2013}\right)}\)
= \(\frac{\sqrt{2}-1}{\sqrt{2}}+...+\frac{\sqrt{2013}-\sqrt{2012}}{\sqrt{2012}\sqrt{2013}}\)
= \(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\)
= \(\frac{\sqrt{2013}-1}{\sqrt{2013}}=\frac{2013-\sqrt{2013}}{2013}\)
đặt \(A=\frac{2012}{\sqrt{2013}}+\frac{2013}{\sqrt{2012}};B=\sqrt{2012}+\sqrt{2013}\)
ta có:\(A=\frac{2013-1}{\sqrt{2013}}+\frac{2012+1}{\sqrt{2012}}=\sqrt{2013}-\frac{1}{\sqrt{2013}}+\sqrt{2012}+\frac{1}{\sqrt{2012}}\)
\(\Rightarrow A=\left(\sqrt{2013}+\sqrt{2012}\right)+\left(\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)>\sqrt{2012}+\sqrt{2013}=B\)
vậy A>B(đpcm)