K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

a) Gọi giao điểm của NM và AH là F. Khi đó theo đề bài ta có:^MFA = ^CHF (=90o). Mà hai góc này ở vị trí đồng vị nên MN // BC.

Do đó BCMN là hình thang.

b)Đề có sai không? Nếu vẽ hình ra AB < AC thì thấy MN > BN

P/s: Không chắc ở câu a

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(NM \bot AH\) (gt)

\(BC \bot AH\) (gt)

Suy ra \(NM\) // \(BC\)

Suy ra \(BNMC\) là hình thang

b) Vì \(NM\) // \(BC\) (cmt)

Suy ra \(\widehat {{\rm{NMB}}} = \widehat {{\rm{MBC}}}\) (so le trong)

Mà \(\widehat {{\rm{MBN}}} = \widehat {{\rm{MBC}}}\) (do \(MB\) là phân giác)

Suy ra \(\widehat {{\rm{MBN}}} = \widehat {{\rm{NMB}}}\)

Suy ra \(\Delta MNB\) cân tại \(N\)

Suy ra \(BN = NM\)

25 tháng 9 2021

\(a,\left\{{}\begin{matrix}MN\perp AH\\BC\perp AH\end{matrix}\right.\Rightarrow MN//BC\Rightarrow BCMN\) là hthang

\(b,MN//BC\Rightarrow\widehat{CBM}=\widehat{BMN}\\ Mà.\widehat{NBM}=\widehat{CBM}\left(t/c.phân.giác\right)\\ \Rightarrow\widehat{BMN}=\widehat{NBM}\)

Do đó tam giác BMN cân tại N nên \(BM=MN\)

 

a: Xét ΔMHC và ΔMKC có

CH=CK

\(\widehat{HCM}=\widehat{KCM}\) 

CM chung

Do đó: ΔMHC=ΔMKC

Suy ra: MH=MK

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

HB=6^2/10=3,6cm

 

23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

a: góc NED+góc NCD=180 độ

=>NEDC nội tiếp

b: ΔAHB vuôg tại H có HM vuông góc AB

nên AM*AB=AH^2

ΔAHC vuông tại H có HN vuông góc AC

nên AN*AC=AH^2

=>AM*AB=AN*AC