Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh:
(2n+1+2n+2+...+2n+99+2n+100) chia hết cho 30 với mọi n thuộc N
A=\(2^{n+1}+2^{n+2}+....+2^{n+100}\)
\(=2^n\left(2+2^2+2^3+....+2^{100}\right)\)
\(2^n\left[\left(2+2^2+2^3+2^4\right)+....+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\right]⋮30\)
\(\Rightarrow A⋮30\forall n\in N\)
2n+1 + 2n+2 + ... + 2n+99 + 2n+100
= (2n+1 + 2n+2 + 2n+3 + 2n+4) + ... + (2n+97 + 2n+98 + 2n+99 + 2n+100)
= 2n+1(1 + 2 + 22 + 23) + ... + 2n+97(1 + 2 + 22 + 23)
= 2n.2.15 + ... + 2n.297.15
= 2n.30 + ... + 2n.296.30
= 30(2n + ... + 2n+96) \(⋮\) 30 (đpcm)
A=\(2^{n+1}+2^{n+2}+....+2^{n+100}\)
\(=2^n\left(2+2^2+2^3+....+2^{100}\right)\)
\(2^n\left[\left(2+2^2+2^3+2^4\right)+....+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\right]⋮30\)
\(\Rightarrow A⋮30\forall n\in N\)
2n+1 + 2n+2 + ... + 2n+99 + 2n+100
= (2n+1 + 2n+2 + 2n+3 + 2n+4) + ... + (2n+97 + 2n+98 + 2n+99 + 2n+100)
= 2n+1(1 + 2 + 22 + 23) + ... + 2n+97(1 + 2 + 22 + 23)
= 2n.2.15 + ... + 2n.297.15
= 2n.30 + ... + 2n.296.30
= 30(2n + ... + 2n+96) \(⋮\) 30 (đpcm)