K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

A=\(2^{n+1}+2^{n+2}+....+2^{n+100}\)

\(=2^n\left(2+2^2+2^3+....+2^{100}\right)\)

\(2^n\left[\left(2+2^2+2^3+2^4\right)+....+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\right]⋮30\)

\(\Rightarrow A⋮30\forall n\in N\)

9 tháng 8 2019

2n+1 + 2n+2 + ... + 2n+99 + 2n+100

= (2n+1 + 2n+2 + 2n+3 + 2n+4) + ... + (2n+97 + 2n+98 + 2n+99 + 2n+100)

= 2n+1(1 + 2 + 22 + 23) + ... + 2n+97(1 + 2 + 22 + 23)

= 2n.2.15 + ... + 2n.297.15

= 2n.30 + ... + 2n.296.30

= 30(2n + ... + 2n+96\(⋮\) 30 (đpcm)