\(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)
\(VP=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\le\frac{a+b}{2}\sqrt{2\left(a+b\right)}\)\(\Rightarrow\)\(VP^2\le\frac{\left(a+b\right)^3}{2}\) (1)
chứng minh bổ đề: \(VT^2=\left(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}\right)^2\ge\frac{\left(a+b\right)^3}{2}\)
\(\Leftrightarrow\)\(\frac{\left(a+b\right)^4}{4}+\frac{\left(a+b\right)^2}{16}+\frac{\left(a+b\right)^3}{4}\ge\frac{\left(a+b\right)^3}{2}\)
\(\Leftrightarrow\)\(\left(a+b\right)^4+\frac{\left(a+b\right)^2}{4}\ge\left(a+b\right)^3\)
Có: \(\left(a+b\right)^4+\frac{\left(a+b\right)^2}{4}\ge2\sqrt{\frac{\left(a+b\right)^6}{4}}=\left(a+b\right)^3\)\(\Rightarrow\)\(VT^2\ge\frac{\left(a+b\right)^3}{2}\) (2)
(1) và (2) => \(VT^2\ge VP^2\) => \(VT\ge VP\) ( đpcm )
toán lớp 1 ??? giỡn quài , phi logic :3
Ap dung bdt AM-GM cho 2 so ko am A,B ta co
\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)
VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)
=>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)
Tu (2),(3) => DPCM