K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

\(2x-\left|x+1\right|=-\frac{1}{2}\)

=> \(\left|x+1\right|=2x-\left(-\frac{1}{2}\right)\)

=> \(\left|x+1\right|=2x+\frac{1}{2}\)

=> \(\left[{}\begin{matrix}x+1=2x+\frac{1}{2}\\x+1=-\left(2x+\frac{1}{2}\right)\end{matrix}\right.\) => \(\left[{}\begin{matrix}x-2x=\frac{1}{2}-1\\x+1=-2x-\frac{1}{2}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}-1x=-\frac{1}{2}\\x+2x=\left(-\frac{1}{2}\right)-1\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=\left(-\frac{1}{2}\right):\left(-1\right)\\3x=-\frac{3}{2}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{1}{2}\\x=\left(-\frac{3}{2}\right):3\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{2};-\frac{1}{2}\right\}.\)

Chúc bạn học tốt!

\(2x-\left|x+1\right|=-\frac{1}{2}\)

\(\Leftrightarrow\left|x+1\right|=2x+\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=2x+\frac{1}{2}\\x+1=-\left(2x+\frac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x+1=-2x-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\3x=-\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)

Vậy : \(x\in\left\{\frac{1}{2},-\frac{1}{2}\right\}\)

Đặt C(x)=0

\(\Leftrightarrow-2x\left(2x-3\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow-4x^2+6x-2x+2=0\)

\(\Leftrightarrow-4x^2+4x+2=0\)

\(\Leftrightarrow4x^2-4x-2=0\)

\(\Leftrightarrow\left(2x-1\right)^2=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\sqrt{3}\\2x-1=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\sqrt{3}+1\\2x=-\sqrt{3}+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{3}+1}{2}\\x=\dfrac{-\sqrt{3}+1}{2}\end{matrix}\right.\)

Đặt Q(x)=0

\(\Leftrightarrow2\left(x-3\right)-\left(x-1\right)=0\)

\(\Leftrightarrow2x-6-x+1=0\)

\(\Leftrightarrow x=5\)

a:

ĐKXĐ: x<>2

|2x-3|=1

=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào A, ta được:

\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)

b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)

\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)

\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)

c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)

\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)

Để P lớn nhất thì \(\dfrac{2}{x-2}\) max

=>x-2=1

=>x=3(nhận)

23 tháng 10 2017

\(\left|x-1\right|+2C=\left|x-1,5\right|+\left|1-x\right|\\ \Leftrightarrow\left|x-1\right|+2C=\left|x-1,5\right|+\left|x-1\right|\\ \Rightarrow2C=\left|x-1,5\right|\ge0\\ \Rightarrow C\ge0\)

Để C=0 thì

\(\left|x-1,5\right|=0\\ \Leftrightarrow x-1,5=0\\ \Leftrightarrow x=1,5\)

Vậy...

23 tháng 10 2017

cái này sai r mk xóa nhé

Đề full ko phải vệ,có lẽ bạn đó viết quá gần

26 tháng 10 2016

x=1hoặc =-1.nếu đúng thì k mình nhé

30 tháng 10 2016

may ngu nhu bo y sai bet

15 tháng 8 2017

a,\(2x^2-8x=0\)

\(2x\left(x-4\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

b,\(B\left(x\right)=\left(2x^2-8x\right)-\left(3x+2x^2\right)\)

\(=2x^2-8x-3x-2x^2\)

=\(-11x\)

c,\(-11x=0\)

\(\Rightarrow x=0\)

15 tháng 8 2017

\(A\left(x\right)=2x^2-8x\)

\(\Rightarrow2x^2-8x=0\)

\(\Rightarrow x\left(2x-8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x=8\Rightarrow x=4\end{matrix}\right.\)

\(B\left(x\right)=-3x+2x^2\)

\(B\left(x\right)=2x^2-3x\)

\(2x^2-3x=0\)

\(\Rightarrow x\left(2x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x=3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)