K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

\(=-16x^4y^6-24x^5y^5-9x^6y^4\)

\(=-x^4y^4\left(3x+4y\right)^2\)

17 tháng 1 2021

undefined

3 tháng 8 2023

a) 9x4+16y6-24x2y3

=(3x2)2-2.3x2.4y3+(4y3)2

=(3x2-4y3)2

b) 16x2-24xy+9y2

=(4x)2-2.4x.3y+(3y)2

=(4x-3y)2

c) 36x2-(3x-2)2

=(36x-3x+2)(36x+3x-2)

=(33x+2)(39x-2)

d) 27x3+54x2y+36xy2+8y3

=(3x)3+3.(3x)2.2y+3.3x.(2y)2+(2y)3

=(3x+2y)3

e) y9-9x2y6+27x4y3-27x6

=(y3)3-3.(y3)2.3x2+3.y3.(3x2)2-(3x2)3

=(y3-3x2)3

f) 64x3+1

= (4x)3+13

=(4x+1)[(4x)2-4x.1+12]

=(4x+1)(16x2-4x+1)

e) 27x6-8x3  *sửa đề*

=(3x2)3-(2x)3

=(3x2-2x)[(3x)2+3x2.2x+(2x)2]

=(3x2-2x)(9x2+6x3+4x2)

~~~

27 tháng 10 2023

Để phân tích đa thức thành nhân tử, ta có thể sử dụng phương pháp phân tích hệ số hoặc sử dụng định lý nhân tử của đa thức. Trong trường hợp này, chúng ta sẽ sử dụng phương pháp phân tích hệ số.

Đa thức: x^4 - 2x^3 + 10x^2 + 9x + 14

Đầu tiên, chúng ta sẽ tìm các ước của hệ số tự do (14). Các ước của 14 là ±1, ±2, ±7 và ±14. Tiếp theo, chúng ta sẽ thử từng ước này vào đa thức để kiểm tra xem có tồn tại nhân tử nào cho đa thức hay không.

Thử với ước 1: 1^4 - 2(1)^3 + 10(1)^2 + 9(1) + 14 = 32

Thử với ước -1: (-1)^4 - 2(-1)^3 + 10(-1)^2 + 9(-1) + 14 = 16

Thử với ước 2: 2^4 - 2(2)^3 + 10(2)^2 + 9(2) + 14 = 58

Thử với ước -2: (-2)^4 - 2(-2)^3 + 10(-2)^2 + 9(-2) + 14 = 10

Thử với ước 7: 7^4 - 2(7)^3 + 10(7)^2 + 9(7) + 14 = 2064

Thử với ước -7: (-7)^4 - 2(-7)^3 + 10(-7)^2 + 9(-7) + 14 = 1288

Thử với ước 14: 14^4 - 2(14)^3 + 10(14)^2 + 9(14) + 14 = 25088

Thử với ước -14: (-14)^4 - 2(-14)^3 + 10(-14)^2 + 9(-14) + 14 = 20096

Dựa vào kết quả trên, ta thấy rằng không có ước nào cho đa thức. Do đó, ta kết luận rằng đa thức x^4 - 2x^3 + 10x^2 + 9x + 14 không thể phân tích thành nhân tử trong trường số thực.

AH
Akai Haruma
Giáo viên
26 tháng 10 2023

Lời giải:

1. 
$x^3+3x^2-16x-48=(x^3+3x^2)-(16x+48)=x^2(x+3)-16(x+3)$

$=(x+3)(x^2-16)=(x+3)(x-4)(x+4)$

2.

$4x(x-3y)+12y(3y-x)=4x(x-3y)-12y(x-3y)=(x-3y)(4x-12y)=4(x-3y)(x-3y)=4(x-3y)^2$

3.

$x^3+2x^2-2x-1=(x^3-x^2)+(3x^2-3x)+(x-1)=x^2(x-1)+3x(x-1)+(x-1)$

$=(x-1)(x^2+3x+1)$

9 tháng 8 2021

cái này có những biểu thức ko dùng được hđt hoặc đặt nhân tử chung =))) anh nghĩ đề em nên thay chữ và thành hoặc 

1, \(15x^2+10xy=5x\left(3x+2y\right)\)

2, \(24x-18y+30=6\left(4x-3y+5\right)\)

3, \(2x\left(y-2009\right)+5y\left(y-2009\right)=\left(y-2009\right)\left(2x+5y\right)\)

4, \(35x\left(y-8\right)-14y\left(8-y\right)=\left(y-8\right)\left(35x+14y\right)=7\left(5x+2y\right)\left(y-8\right)\)

5, \(x^2+14x+49=x^2+2.7x+7^2=\left(x+7\right)^2\)

6, \(9x^2-4=\left(3x-2\right)\left(3x+2\right)\)

9 tháng 8 2021

Trả lời:

1, 15x2 + 10xy = 5x ( 3x + 2y )

2, 24x - 18y + 30 = 6 ( 4x - 3y + 5 )

3, 2x ( y - 2009 ) + 5y ( y - 2009 ) = ( y - 2009 )( 2x + 5y )

4, 35x ( y - 8 ) - 14y ( 8 - y ) = 35x ( y - 8 ) + 14y ( y - 8 ) = ( y - 8 )( 35x + 14y ) = 7 ( y - 8 )( 5x + 2y )

5, x2 + 14x + 49 = ( x + 7 )2 

6, 9x2 - 4 = ( 3x - 2 )( 3x + 2 )

26 tháng 7 2016

a)3x2+9x-30=3x2+15x-6x-30=(3x2-6x)+(15x-30)=3x(x-2)+15(x-2)=(3x+15)(x-2)

b)3x2-5x-2=3x2-6x+x-2=(3x2-6x)+(x-2)=3x(x-2)+(x-2)=(3x+1)(x-2)

21 tháng 12 2022

bạn tách ra từng ít câu 1 thôi ạ

22 tháng 12 2022

a: \(=5x\left(xy^2+3x+6y^2\right)\)

b: \(=\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x+3-x-2\right)=\left(x-2\right)\)

c: \(=\left(x-3\right)\left(x-4\right)\)

d: \(=x\left(x^2-2xy+y^2-9\right)\)

=x(x-y-3)(x-y+3)

e: \(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)

f: \(=\left(x-4\right)\left(x+3\right)\)

 

25 tháng 6 2018

\(16x-5x^2-3=\left(-5x^2+15x\right)+\left(x-3\right)=-5x.\left(x-3\right)+\left(x-3\right)\\ \)

                                 \(=\left(x-3\right).\left(1-5x\right)\)

\(x^2-x-6=\left(x^2-3x\right)+\left(2x-6\right)=x.\left(x-3\right)+2.\left(x-3\right)=\left(x-3\right).\left(x+2\right)\)

25 tháng 6 2018

\(16x-5x^2-3\)

\(=-5x^2+16x-3\)

\(=-\left(5x^2-16x+3\right)\)
\(=-\left(5x^2-15x-x+3\right)\)

\(=-\left[5x\left(x-3\right)-\left(x-3\right)\right]\)

\(=-\left[\left(5x-1\right)\left(x-3\right)\right]\)

Câu 2:

\(x^2-x-6\)

\(=x^2+2x-3x-6\)

\(=x\left(x+2\right)-3\left(x+2\right)\)

\(=\left(x-3\right)\left(x+2\right)\)