1) Cho hình thang ABCD (AB//CD).Gọi E,F,K là trung điểm của AD,BC,BD. CMR:E,F,K thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCD là hình thang có AB //CD
E là trung điểm của AD ( gt )
F là trung điểm của BC ( gt)
EF là đường trung bình của hình thang ABCD
EF // AB //CD ( 1 )
K là trungđiểm của BD
EK là đường trung bình của hình thang ABCD
EK // AB (2 )
Theo tiên đề Ơ-Clít , từ ( 1) và (2)
suy ra EF là trùng EK
Vậy 3 điểm E , F , K thẳng hàng
+ ΔABD có DE = EA và DK = KB
⇒ EK là đường trung bình của ΔDAB
⇒ EK // AB
+ Hình thang ABCD có: AE = ED và BF = FC
⇒ EF là đường trung bình của hình thang ABCD
⇒ EF // AB// CD
+ Qua điểm E ta có EK // AB và EF // AB nên theo tiên đề Ơclit ta có E, K, F thẳng hàng.
Xét ΔDAB có
E là trung điểm của AD
K là trung điểm của BD
Do đó: EK//AB
hay EK//CD
Xét ΔBDC có
K là trung điểm của BD
F là trung điểm của BC
Do đó: KF là đường trung bình của ΔBDC
Suy ra: KF//DC
Ta có: EK//DC
KF//DC
mà KE và KF có điểm chung là K
nên E,K,F thẳng hàng
Ta có E và F là trung điểm của AD và BC
=> EF là ĐTB của hình thang ABCD
=> EF//AB//CD
Do F,K là trung điểm cuả BD và BC
=> FK là ĐTB của tam giác ADC
=> FK//CD
Do E và K là trung điểm của AD và BD
=> EK là ĐTB của tam giác ABD
=> EK//AB
Mà AB//CD
=>EF ; EK ; FK cùng // với AB
=> E ; F ; K thẳng hàng
Bài giải:
Ta có EA = ED, KB = KD (gt)
Nên EK // AB
Lại có FB = FC, KB = KD (gt)
Nên KF // DC // AB
Qua K ta có KE và KF cùng song song với AB nên theo tiên đề Ơclit ba điểm E, K, F thẳng hàng.
\(\Delta ADB\) có:\(AE=DE\left(gt\right),BF=FD\left(gt\right)\)
\(\Rightarrow AB\) // \(EF\)(theo đlí 2 về đường trung bình của tam giác) (1)
\(\Delta BDC\) có:\(BK=KC\left(gt\right),BF=FD\left(gt\right)\)
\(\Rightarrow FK\) // \(CD\)(theo đlí 2 về đường trung bình của tam giác)
Mà \(CD\) // \(AB\Rightarrow FK\) // \(AB\) (1)
Từ (1) và (2), suy ra:
\(AB\) // \(EF,FK\)
\(\Rightarrow E,F,K\) thẳng hàng (theo tiên đề Ơclit )
a) Xét ΔBDC có
K là trung điểm của BD(gt)
F là trung điểm của BC(gt)
Do đó: KF là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)
Suy ra: KF//DC và \(KF=\dfrac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay KF//AB
Ko có câu hỏi hả bạn
Do EK là đường trung bình của tam giác ABD nên EK//AB ( 1 )
Do KF là đường trung bình của tam giác BDC nên KF//DC ( 2 )
Từ ( 1);( 2 ) suy ra EK//KF
Theo tiên đề Ơ-clít thì 3 điểm E,K,F thẳng hàng