K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=...\)

\(=\frac{1}{30}\left(\frac{30}{2.32}+\frac{30}{3.33}+...+\frac{30}{1973.2003}\right)\)

\(=\frac{1}{30}\left(\frac{1}{2}-\frac{1}{32}+\frac{1}{3}-\frac{1}{33}+...+\frac{1}{1973}-\frac{1}{2003}\right)\)

\(=\frac{1}{30}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1973}\right)-\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{2003}\right)\right]\)

\(=\frac{1}{30}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}\right)-\left(\frac{1}{1974}+\frac{1}{1975}+...+\frac{1}{2003}\right)\right]\)

\(Q=...\)

\(=\frac{1}{1972}\left(\frac{1972}{2.1974}+\frac{1972}{3.1975}+...+\frac{1}{31.2003}\right)\)

\(=\frac{1}{1972}\left(\frac{1}{2}-\frac{1}{1974}+\frac{1}{3}-\frac{1}{1975}+...+\frac{1}{31}-\frac{1}{2003}\right)\)

\(=\frac{1}{1972}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}\right)-\left(\frac{1}{1974}+\frac{1}{1975}+...+\frac{1}{2003}\right)\right]\)

10 tháng 9 2019

\(A=\frac{1}{2.32}+\frac{1}{3.33}+...+\frac{1}{1973.2003}\)

\(=\frac{1}{30}\left(\frac{1}{2}-\frac{1}{32}+\frac{1}{3}-\frac{1}{33}+...+\frac{1}{1973}-\frac{1}{2003}\right)\)

\(=\frac{1}{30}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1973}-\frac{1}{32}-\frac{1}{33}-\frac{1}{2003}\right)\)

\(=\frac{1}{30}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}-\frac{1}{1974}-\frac{1}{1975}-...-\frac{1}{2003}\right)\)

\(B=\frac{1}{2.1974}+\frac{1}{3.1975}+...+\frac{1}{31.2003}\)

\(=\frac{1}{1972}\left(\frac{1}{2}-\frac{1}{1974}+\frac{1}{3}-\frac{1}{1975}+...+\frac{1}{31}-\frac{1}{2003}\right)\)

\(=\frac{1}{1972}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}-\frac{1}{1974}-\frac{1}{1975}-...-\frac{1}{2003}\right)\)

Vậy \(\frac{A}{B}=\frac{1972}{30}\)

5 tháng 2 2020

vào câu hỏi tương tự

5 tháng 2 2020

Câu tìm câu hỏi tương tự mà nghĩ ra

24 tháng 5 2016

30A=30/2*32+30/3*33+30/4*34=1/2-1/32+1/3-1/33+1/4-1/34=99/100

A=3,3/100

26 tháng 6 2016

frac2/3 

10 tháng 3 2019

\(R=\frac{1}{2.32}+\frac{1}{3.33}+......+\frac{1}{1976.2006}\Rightarrow30R=\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1976}-\frac{1}{32}-\frac{1}{33}-....-\frac{1}{2006}=\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{31}-\frac{1}{1977}-\frac{1}{1978}-....-\frac{1}{2006};S=\frac{1}{2.1977}+\frac{1}{3.1978}+....+\frac{1}{31.2006}=\Rightarrow1975S=\frac{1}{2}+\frac{1}{3}+....+\frac{1}{31}-\frac{1}{1977}-\frac{1}{1978}-....-\frac{1}{2006}=R\Rightarrow30R=1975S\Rightarrow R=\frac{1975}{30}S=\frac{395}{6}\Rightarrow\frac{R}{S}=\frac{395}{6}\)

22 tháng 4 2017

chứng tỏ :

Ta có : \(\frac{1}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

áp dụng :

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)

\(A=1-\frac{1}{9}\)

\(A=\frac{8}{9}\)

22 tháng 4 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.......-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)

\(A=1-\frac{1}{9}=\frac{8}{9}\)