K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2019

a) Xét tứ giác ACDE có: 
AI = IE
DI = IC
=> Tứ giác ACDE là hình bình hành
Lại có: góc CAD = 90 độ
=> Tứ giác ACED là hình chữ nhật
b) Có góc DAC = ACB = 90 độ ( HBH ABCD)
Ở câu a có tứ giác ACED là hình chữ nhật => Góc ACE = 90 độ
Có góc BCE = góc ACB + góc ACE
=> Góc BCE = 90 độ + 90 độ
=> Góc BCE = 180 độ
=> B,C,E thẳng hàng
c) Xét HBH ABCD có AD = BC
Xét HCN ACDE có AD = CE
=> BC = CE
=> C là trung điểm của BE

18 tháng 10 2021

TK:
a) Xét tứ giác ACDE có: 
AI = IE
DI = IC
=> Tứ giác ACDE là hình bình hành
Lại có: góc CAD = 90 độ
=> Tứ giác ACED là hình chữ nhật
b) Có góc DAC = ACB = 90 độ ( HBH ABCD)
Ở câu a có tứ giác ACED là hình chữ nhật => Góc ACE = 90 độ
Có góc BCE = góc ACB + góc ACE
=> Góc BCE = 90 độ + 90 độ
=> Góc BCE = 180 độ
=> B,C,E thẳng hàng

a) Vì M là trung điểm AB 

=> AM = MB 

Vì N là trung điểm BC 

=> BN = NC 

=> MN là đường trung bình ∆ABC 

=> MN//AC 

=> AMNC là hình thang (dpcm) 

2) Vì AB = AD (gt)

=> ∆ABD cân tại A 

=> ABD = ADB 

Ta có AM = MB (cmt)

Q là trung điểm AD 

=> AQ = QD 

=> MQ là đường trung bình ∆ABD 

=> QM//DB 

=> QMBD là hình thang 

Mà ABD = ADB (cmt)

= > QMBD là hình thang cân (dpcm)

Tự vé hình:

a) ΔAED=ΔBFC(ch−gn)ΔAED=ΔBFC(ch−gn)

⇒AE=CF⇒AE=CF

ΔAFB=ΔCFD(c−g−c)ΔAFB=ΔCFD(c−g−c)

⇒AE=FC⇒AE=FC

từ 2 điều trên => tứ giác AECF là hình bình hành

b) Ta có: AK//IC (vì AB//CD ,mà K thuộc AB, I thuộc CD)

tương tự : AI//KC

=> Tứ giác AKCI là hình bình hành

=> AI = CK

c) ΔBEC=ΔAFD(cmt)ΔBEC=ΔAFD(cmt)

=> BF=DE

Mà BE=BF +EF

DF=DE+EF

=> BE=DF ( đpcm)

29 tháng 7 2019

Ta có :

AE⊥BD,CF⊥BD⇒AE⊥BD,CF⊥BD⇒ AE // CF (1)(1)

ΔADE=ΔCFB(ch−gn)ΔADE=ΔCFB(ch−gn)

⇒AE=CF⇒AE=CF (2)(2)

Từ (1)(2)⇒AECF(1)(2)⇒AECF là hình bình hành

b, ABCD là hình bình hành

=> AB // CD Hay AK // CI

AECF là hình bình hành

=> AE // CF => AI // CK

Mà AK // CI

=> AKCI là hình bình hành

=> AI = CK

ΔADE=ΔCFB(ch−gn)ΔADE=ΔCFB(ch−gn)

=> BE = DF