Giải pt
\(\frac{60}{x}=\frac{30}{x-6}+\frac{30}{x+10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\)
\(\Leftrightarrow3\left(5x-1\right)+5\left(2x+3\right)=2\left(x-8\right)-x\)
\(\Leftrightarrow15x-3+10x+15=2x-16-x\)
\(\Leftrightarrow15x+10x-2x+x=-16+3-15\)
\(\Leftrightarrow24x=-28\)
\(\Leftrightarrow x=\frac{-28}{24}=\frac{-7}{6}\)
Vậy ...
=>\(\frac{30x\left(x-6\right)}{x\left(x+10\right)\left(x-6\right)}+\frac{30x\left(x+10\right)}{x\left(x+10\right)\left(x-6\right)}=\frac{60\left(x+10\right)\left(x-6\right)}{x\left(x-6\left(x+10\right)\right)}\)
=>30x2-180x+30x2+300x=60x2-360x+600x-3600
=>60x2+120x=60x2+240x-3600
=>-120x=-3600
=>x=30
nhớ k mk........Đúng 100%
a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)
=> \(3x-3-2x-6=-15\)
=> \(3x-3-2x-6+15=0\)
=> \(x=-6\)
Vậy phương trình có nghiệm là x = -6 .
b, Ta có : \(3\left(x-1\right)+2=3x-1\)
=> \(3x-3+2=3x-1\)
=> \(3x-3+2-3x+1=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)
=> \(14-35x-5=16-24x\)
=> \(14-35x-5-16+24x=0\)
=> \(-35x+24x=7\)
=> \(x=\frac{-7}{11}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .
Bài 2 :
a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)
=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)
=> \(x+15x-3=2x-16-10x-15\)
=> \(x+15x-3-2x+16+10x+15=0\)
=> \(24x+28=0\)
=> \(x=\frac{-28}{24}=\frac{-7}{6}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .
b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)
=> \(6x+24-30x+120=10x-15x+30\)
=> \(6x+24-30x+120-10x+15x-30=0\)
=> \(-19x+114=0\)
=> \(x=\frac{-114}{-19}=6\)
Vậy phương trình có nghiệm là x = 6 .
pt đầu \(\Leftrightarrow x+1+\frac{1}{x+1}+x+7+\frac{7}{x+7}=x+3+\frac{3}{x+3}+x+5+\frac{5}{x+5}\)
\(\Rightarrow\frac{1}{x+1}+\frac{7}{x+7}=\frac{3}{x+3}+\frac{5}{x+5}\\ \Rightarrow\frac{8x+14}{x^2+8x+7}=\frac{8x+30}{x^2+8x+15}\)
\(\Leftrightarrow\left(4x+7\right)\left(x^2+8x+15\right)=\left(4x+15\right)\left(x^2+8x+7\right)\)
Đặt a=4x+7
b=x2 +8x+7
như vậy ta được pt mới có dạng \(a\left(b+8\right)=b\left(a+8\right)\Leftrightarrow ab+8a=ab+8b\Rightarrow a=b\)
hay\(4x+7=x^2+8x+7\Rightarrow x^2+4x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
\(\frac{x-30}{10}+\frac{x-28}{9}+\frac{x-26}{8}=-6\)
<=> \(\frac{36.\left(x-30\right)}{360}+\frac{40\left(x-28\right)}{360}+\frac{45\left(x-26\right)}{360}=\frac{-2160}{360}\)
=> \(36x-1080+40x-1120+45x-1170=-2160\)
\(< =>36x+40x+45x=-2160+1080+1120+1170\)
<=> \(121x=1210\)
<=> x = 10
\(\frac{x+10}{90}+\frac{x+20}{80}+\frac{x+30}{70}+\frac{x+40}{60}+\frac{x+50}{50}=-5\)
<=> \(\frac{x+10}{90}+1+\frac{x+20}{80}+1+\frac{x+30}{70}+1+\frac{x+40}{60}+1+\frac{x+50}{50}+1=0\)
<=> \(\frac{x+100}{90}+\frac{x+100}{80}+\frac{x+100}{70}+\frac{x+100}{60}+\frac{x+100}{50}=0\)
<=> \(\left(x+100\right)\left(\frac{1}{90}+\frac{1}{80}+\frac{1}{70}+\frac{1}{60}+\frac{1}{50}\right)=0\)
<=> x + 100 = 0
<=> x = -100
Vậy x = -100
\(\frac{60}{x}=\frac{30}{x-6}+\frac{30}{x+10}\)
\(\Leftrightarrow\frac{60}{x}=\frac{30}{x-6}+\frac{30}{x+10},Đkxđ:x\ne0,6,-10\)
\(\Leftrightarrow\frac{60}{x}-\frac{30}{x-6}-\frac{30}{x+10}=0\)
\(\Leftrightarrow\frac{60\left(x-6\right)\left(x+10\right)-30x\left(x+10\right)=30\left(x-6\right)}{x\left(x-6\right)\left(x+10\right)}\)
\(\Leftrightarrow\frac{\left(60x-360\right)\left(x+10\right)-30x^2-300x-30x^2+180x}{x\left(x-6\right)\left(x+10\right)}\)
\(\Leftrightarrow\frac{60x^2+600x-360x-3600-30x^2-300x-30x^2+180}{x\left(x-6\right)\left(x=10\right)}=0\)
\(\Leftrightarrow\frac{120x-3600}{x\left(x-6\right)\left(x+10\right)}=0\)
\(\Leftrightarrow120x-3600=0\)
\(\Leftrightarrow120x=3600\)
\(\Leftrightarrow x=30;x\ne0;x\ne6,x\ne-10\)