K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

a)\(n^4+4\)

\(=\left(n^4-2n^3+2n^2\right)+\left(2n^3-4n^2+4n\right)+\left(2n^2-4n+4\right)\)

\(=n^2\left(n^2-2n+2\right)+2n\left(n^2-2n+2\right)+2\left(n^2-2n+2\right)\)

\(=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)

2 tháng 8 2019

Làm nốt

Ta có:\(A=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)

Để A là số nguyên tố nên 1 trong 2 thừa số phải bằng 1 và số còn lại phải là số nguyên tố

Do \(n^2-2n+2< n^2+2n+2\)nên \(n^2-2n+2=1\)

\(\Leftrightarrow n^2-2n+1=0\)

\(\Leftrightarrow\left(n-1\right)^2=0\)

\(\Leftrightarrow n=1\)

Thay n=1 vào \(n^2+2n+2\) ta được \(n^2+2n+2=5\) là số nguyên tố

Vậy n=1

NV
1 tháng 3 2023

a. Ta có \(63=3^2.7\) có 2 ước nguyên tố là 3 và 7

Do \(3n+1\) ko chia hết cho 3 với mọi n tự nhiên

\(\Rightarrow\) Phân số đã cho rút gọn được khi \(3n+1\) và 63 có ước chung là 7

\(\Rightarrow3n+1⋮7\)

Mà 3n+1 và 7 đều chia 3 dư 1 \(\Rightarrow3n+1=7\left(3k+1\right)\Rightarrow n=7k+2\) với k là số tự nhiên

Vậy \(n=7k+2\) với k là số tự nhiên thì phân số đã cho rút gọn được

b.

A là số tự nhiên khi \(63⋮3n+1\Rightarrow3n+1=Ư\left(63\right)\)

Mà \(3n+1⋮̸3\Rightarrow\left[{}\begin{matrix}3n+1=7\\3n+1=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=2\\n=0\end{matrix}\right.\)

16 tháng 12 2019

28 tháng 1 2022

Tham khảo

https://khoahoc.vietjack.com/question/627390/cho-phan-so-a-63-3n-1-n-thuoc-n-a-voi-gia-tri-nao-cua-n-thi-a-rut-gon-duoc

28 tháng 1 2022

Tham khảo :

23 tháng 2 2023

20 tháng 4 2021

b, \(A=\dfrac{2n+2}{2n-4}=\dfrac{2n-4+6}{2n-4}=\dfrac{6}{2n-4}\)

\(\Rightarrow2n-4\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

2n - 41-12-23-36-6
2n53627110-2
n5/2 ( ktm )3/2 ( ktm )317/2 ( ktm )1/2 ( ktm )5-1

 

6 tháng 4 2016

Gọi d là ước nguyên tố của 63 và 3n+1 

Ta có 63 : d ( mình dùng dấu chia thay cho chia hết)

=>d=7

Vậy 3n+1 : 7

=>3n+1-7 :7

3n-6 :7

3(n-2) :7

Mà (3;7)=1

=>n-2 :7

=>n-2=7k

n=7k+2

Vậy để A rút gọn được thì n=7k+2

Để A là STN thì 63 : 3n+1

=>3n+1 thuộc Ư(63)={1;3;7;9;21;63}

Bạn tự tìm nốt nha

1,\(P=n^4-4-\left(n^2-2\right)\left(5n-9\right)\)

\(P=\left(n^2+2\right)\left(n^2-2\right)-\left(n^2-2\right)\left(5n-9\right)\)

\(P=\left(n^2-2\right)\left(n^2+2-5n+9\right)\)

\(P=\left(n^2-2\right)\left(n^2-5n+7\right)\)

Vậy......