a)phân tích thành nhân tử :A=n4+4
b)Với giá trị tự nhiên nào của n thì giá trị tương ứng của A là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có \(63=3^2.7\) có 2 ước nguyên tố là 3 và 7
Do \(3n+1\) ko chia hết cho 3 với mọi n tự nhiên
\(\Rightarrow\) Phân số đã cho rút gọn được khi \(3n+1\) và 63 có ước chung là 7
\(\Rightarrow3n+1⋮7\)
Mà 3n+1 và 7 đều chia 3 dư 1 \(\Rightarrow3n+1=7\left(3k+1\right)\Rightarrow n=7k+2\) với k là số tự nhiên
Vậy \(n=7k+2\) với k là số tự nhiên thì phân số đã cho rút gọn được
b.
A là số tự nhiên khi \(63⋮3n+1\Rightarrow3n+1=Ư\left(63\right)\)
Mà \(3n+1⋮̸3\Rightarrow\left[{}\begin{matrix}3n+1=7\\3n+1=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=2\\n=0\end{matrix}\right.\)
b, \(A=\dfrac{2n+2}{2n-4}=\dfrac{2n-4+6}{2n-4}=\dfrac{6}{2n-4}\)
\(\Rightarrow2n-4\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
2n - 4 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2n | 5 | 3 | 6 | 2 | 7 | 1 | 10 | -2 |
n | 5/2 ( ktm ) | 3/2 ( ktm ) | 3 | 1 | 7/2 ( ktm ) | 1/2 ( ktm ) | 5 | -1 |
Gọi d là ước nguyên tố của 63 và 3n+1
Ta có 63 : d ( mình dùng dấu chia thay cho chia hết)
=>d=7
Vậy 3n+1 : 7
=>3n+1-7 :7
3n-6 :7
3(n-2) :7
Mà (3;7)=1
=>n-2 :7
=>n-2=7k
n=7k+2
Vậy để A rút gọn được thì n=7k+2
Để A là STN thì 63 : 3n+1
=>3n+1 thuộc Ư(63)={1;3;7;9;21;63}
Bạn tự tìm nốt nha
1,\(P=n^4-4-\left(n^2-2\right)\left(5n-9\right)\)
\(P=\left(n^2+2\right)\left(n^2-2\right)-\left(n^2-2\right)\left(5n-9\right)\)
\(P=\left(n^2-2\right)\left(n^2+2-5n+9\right)\)
\(P=\left(n^2-2\right)\left(n^2-5n+7\right)\)
Vậy......
a)\(n^4+4\)
\(=\left(n^4-2n^3+2n^2\right)+\left(2n^3-4n^2+4n\right)+\left(2n^2-4n+4\right)\)
\(=n^2\left(n^2-2n+2\right)+2n\left(n^2-2n+2\right)+2\left(n^2-2n+2\right)\)
\(=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)
Làm nốt
Ta có:\(A=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)
Để A là số nguyên tố nên 1 trong 2 thừa số phải bằng 1 và số còn lại phải là số nguyên tố
Do \(n^2-2n+2< n^2+2n+2\)nên \(n^2-2n+2=1\)
\(\Leftrightarrow n^2-2n+1=0\)
\(\Leftrightarrow\left(n-1\right)^2=0\)
\(\Leftrightarrow n=1\)
Thay n=1 vào \(n^2+2n+2\) ta được \(n^2+2n+2=5\) là số nguyên tố
Vậy n=1