Chứng minh đa thức sau vô nghiệm:
f(x)=(x−1)(x+2)−(x−3)f(x)=(x−1)(x+2)−(x−3)
g(x)=(3−x)(4+x)−(13−x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trình bày đề bài cho dễ nhìn bạn eyy :v
Khó nhìn như này thì God cũng chịu -.-
4:
a: f(x)=0
=>-x-4=0
=>x=-4
b: g(x)=0
=>x^2+x+4=0
Δ=1^2-4*1*4=1-16=-15<0
=>g(x) ko có nghiệm
c: m(x)=0
=>2x-2=0
=>x=1
d: n(x)=0
=>7x+2=0
=>x=-2/7
G (x) = x2 + 2x + 3
= x2 + x + x + 1 + 2
= x.(x + 1) + (x + 1) + 2
= (x + 1).(x + 1) + 2
= (x + 1)2 + 2 \(\ge\)2
Vậy G(x) vô nghiệm.
A (x) = x2 - x + 1
= x2 - 1/2x - 1/2x + 1/4 + 3/4
= x.(x - 1/2) - 1/2.(x - 1/2) + 3/4
= (x - 1/2).(x - 1/2) + 3/4
= (x - 1/2)2 + 3/4 \(\ge\)3/4
Vậy A(x) vô nghiệm.
\(G\left(x\right)=x^2+2x+3\)
\(=x^2+x+x+1+2\)
\(=x.\left(x+1\right)+\left(x+1\right)+2\)
\(=\left(x+1\right).\left(x+1\right)+2\)
\(=\left(x+1\right)^2+2\ge2\)
Vậy \(G\left(x\right)\) vô nghiệm .
\(A\left(x\right)=x^2-x+1\)
\(=x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=x.\left(x-\frac{1}{2}\right)-\frac{1}{2}.\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right).\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(A\left(x\right)\) vô nghiệm
a, Ta có: f(x)= x2-10x+27 = (x-5)2+2>0
=> pt vô nghiệm
b, g(x)=x2+(2/3)x+4/9=x2+2.(1/3).x+1/9+1/3
= (x+1/3)2+1/3>0
=> pt vô nghiệm.
\(a,f\left(x\right)=x^2-10x+27\)
\(\Rightarrow f\left(x\right)=x^2-5x-5x+25+2\)
\(\Rightarrow f\left(x\right)=x\left(x-5\right)-5\left(x-5\right)+2\)
\(\Rightarrow f\left(x\right)=\left(x-5\right)^2+2\ge2>0\) (Vì \(\left(x-5\right)^2\ge0\) \(Vx\) )
Vậy đa thức f(x) vô nghiệm
\(b,g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}\)
\(\Rightarrow g\left(x\right)=x^2+\frac{1}{3}x+\frac{1}{3}x+\frac{1}{9}+\frac{3}{9}\)
\(\Rightarrow g\left(x\right)=x\left(x+\frac{1}{3}\right)+\frac{1}{3}\left(x+\frac{1}{3}\right)+\frac{1}{3}\)
\(\Rightarrow g\left(x\right)=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\) (Vì \(\left(x+\frac{1}{3}\right)^2\ge0\) \(Vx\) )
Vậy đa thức g(x) vô nghiệm
\(f\left(x\right)=\left(x-1\right)\left(x+2\right)-\left(x-3\right)\)
\(=x^2+x-2-x+3\)
\(=x^2+1>1\forall x\)
Vậy \(f\left(x\right)\)vô nghiệm
\(g\left(x\right)=\left(3-x\right)\left(4+x\right)-\left(13-x\right)\)
\(=12-x-x^2-13+x\)
\(=-x^2-1\)
\(=-\left(x^2+1\right)< -1\forall x\)
Vậy \(g\left(x\right)\)vô nghiệm