Tìm các số nguyên n để : Giá trị cuả biểu thức n3 - n2 + 2n + 7 chia hết cho giá trị của biểu thức n2 + 1 .
Các bạn giúp mình với !!!!!! Cảm ơn !!!!!!!! TVM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n3-7n2+13n
=2n3-n2-6n2+3n+10n
=n2(2n-1)-3n(2n-1)+10n chia hết cho 2n-1
=>10n chia hết cho 2n-1
=>10n-5+5 chia hết cho 2n-1
=>5 chia hết cho 2n-1
=>2n-1=-5;-1;1;5
=>2n=-4;0;2;6
=>n=-2;0;1;3
Vậy n=-2;0;1;3
Tìm các số nguyên n để: Gía trị biểu thức n3-n2+2n+7 chia hết cho giá trị biểu thức n2+1
Ở đây, ta có thực hiện đặt phép chia như câu 1 để tìm số dư và tìm điều kiện giá trị của n để thỏa mãn đề bài. Nhưng bài này ta làm cách biến đội như sau:
Ta có : n3 - 2n + 3n + 3
= n3 - n + 3
= n(n2 - 1)
= n(n - 1)(n + 1) + 3
Để n3 - 2n + 3n + 3 chia hết cho n - 1
=> n(n - 1)(n + 1) + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư(3) = {-3;-1;1;3}
=> n = {-2;0;2;4}
\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)
Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp
nên n^3+3n^2+2n chia hết cho 3!=6
=>Để P nguyên thì 2n+1/1-2n nguyên
=>2n+1 chia hết cho 1-2n
=>2n+1 chia hết cho 2n-1
=>2n-1+2 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;2;-2\right\}\)
=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)