Cho tam giác ABC. Một điểm O bất kì nằm trong tam giác. Qua O kẻ đường thẳng Ox vuông góc với BC sao cho OX=BC. Tương tự xác định Y,Z. Chứng minh rằng O là trọng tâm tam giác XYZ.
Giúp mình với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
Dựng hình bình hành OZWY. Ta có YW = OZ = AB và ^WYO = 1800 - ^YOZ = ^BAC
Xét \(\Delta\)ABC và \(\Delta\)YWO: AB = OZ, AC = YO, ^BAC = ^WYO => \(\Delta\)ABC = \(\Delta\)YWO (c.g.c)
Suy ra ^ACB = ^YOW (2 góc tương ứng). Vì ^ACB + ^XOY = 1800 nên ^YOW + ^XOY = 1800
Suy ra X,O,W thẳng hàng. Theo tính chất hình bình hành thì WO chia đôi YZ
Do đó XO cũng chia đôi YZ. Chứng minh tương tự YO chia đôi ZX, ZO chia đôi XY
Vậy thì O là trọng tâm của tam giác XYZ (đpcm).
* Bài toán tổng quát: Cho tam giác ABC. Một điểm O bất kì nằm trong tam giác. Trên đường thẳng qua O vuông góc BC,CA,AB lần lượt lấy các điểm X,Y,Z sao cho \(\frac{OX}{BC}=\frac{OY}{CA}=\frac{OZ}{AB}=k\). Khi đó O là trọng tâm của tam giác XYZ.
Phép chứng minh cũng tương tự như bài toán vừa rồi.
Cảm ơn nhé