K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề bài sai rồi!Riêng 1/(2.2) đã bằng 1/4 rùi thì tổng trên phải lớn hơn 1/4 chứ!

25 tháng 7 2019

Bạn Phạm Gia Bảo nói đúng đấy

Bạn nên sửa đề bài đi

30 tháng 7 2019

Giúp mình bài này với

30 tháng 7 2019

\(\frac{1}{2.2}+\frac{1}{4.4}+\frac{1}{6.6}+...+\frac{1}{200.200}\)

\(=\frac{1}{4}\left(1+\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\right)\)

\(< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=\frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=\frac{1}{4}\left(1+1-\frac{1}{100}\right)=\frac{1}{4}\left(2-\frac{1}{100}\right)=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)

19 tháng 7 2017

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}\)

\(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+....+\frac{19}{81.100}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow A< 1\text{(đpcm) }\)

7 tháng 2 2018

Ta có:

\(\frac{1}{2.2}\)<\(\frac{1}{1.2}\)

\(\frac{1}{3.3}\)<\(\frac{1}{2.3}\)

..............

\(\frac{1}{1009.1009}\)<\(\frac{1}{1008.1009}\)

=>A< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1008.1009}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1008}-\frac{1}{1009}\)

=\(\frac{1}{1}-\frac{1}{1009}=\frac{1008}{1009}>\frac{1008}{1344}=\frac{3}{4}\)

=>A<\(\frac{3}{4}\)

7 tháng 2 2018

Mình nghĩ bạn cần xem lại :

\(A< \frac{1008}{1009}>\frac{1008}{1344}=\frac{3}{4}\)không có nghĩa là \(A< \frac{3}{4}\)

Xem lại ..

10 tháng 6 2017

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+.....+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+.....+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

10 tháng 6 2017

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=1-\frac{1}{10^2}< 1\)

21 tháng 7 2019

#)Giải :

Bài 1 :

\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\Leftrightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)

\(\Leftrightarrow3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(\Leftrightarrow2C=1-\frac{1}{3^{100}}\Leftrightarrow C=\frac{1-\frac{1}{3^{100}}}{2}< \frac{1}{2}\Rightarrow C< \frac{1}{2}\left(đpcm\right)\)

Bài 2 : 

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\left(1-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{16}\right)+...+\left(\frac{1}{81}-\frac{1}{100}\right)=1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

26 tháng 7 2015

S= 1/2 - 1/2 + 1/3 - 1/3 + 1/4 - 1/4 +...+ 1/50 - 1/50

S=       0     +       0      +      0      +...+        0

S=  0

4 tháng 6 2020

\(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{49.49}+\frac{1}{50.50}\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{50}-\frac{1}{50}\)

\(=0+0+...+0\)

\(=0\)

5 tháng 12 2015

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+..+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)

nhớ tick nhé