Chứng minh rằng P=49n+296.13n chia hết cho 33 với mọi thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(n\left(n+2\right)\left(49n^2-1\right)\)
\(=n\left(n+2\right)\left(49n^2-49+48\right)\)
\(=n\left(n+2\right)\left(49n^2-49\right)+48n\left(n+2\right)\)
\(=n\cdot\left(n+2\right)\cdot49\cdot\left(n^2-1\right)+48n\left(n+2\right)\)
\(=49\cdot n\cdot\left(n-1\right)\left(n+1\right)\left(n+2\right)+48n\left(n+2\right)\)
\(=49\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)+48n\left(n+2\right)\)
Ta có: n-1;n;n+1;n+2 là bốn số tự nhiên liên tiếp
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)⋮24\)
\(\Leftrightarrow49\cdot\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)⋮24\)(1)
Ta có: \(48⋮24\)(Do 48 là bội của 24)
nên \(48n\left(n+2\right)⋮24\)(2)
Từ (1) và (2) suy ra \(49\cdot\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)+48n\left(n+2\right)⋮24\)
\(\Leftrightarrow n\cdot\left(n+2\right)\cdot\left(49n^2-1\right)⋮24\)(đpcm)
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
b) a(a+1)(a+2)
+) Giả sử a là số lẻ
=> a+1 là số chẵn và chia hết cho 2 => a(a+1)(a+2) chia hết cho 2
+) Giả sử a là số chẵn
=> a chia hết cho 2 => a(a+1)(a+2) chia hết cho 2
Vậy a(a+1)(a+2) chia hết cho 2 với mọi a thuộc N (1)
+) Giả sử a không chia hết cho 3 nên a chia 3 dư 1 hoặc dư 2
Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 => a(a+1)(a+2) chia hết cho 3
Nếu a chia 3 dư 2 thì a+1 chia hết cho 3 => a(a+1)(a+2) chia hết cho 3
Vậy a(a+1)(a+2) chia hết cho 3 với mọi a thuộc N (2)
Từ (1) và (2) => a(a+1)(a+2) chia hết cho 2 và 3 với mọi a thuộc N
_HT_
a) 1980a - 1995b
Ta có: 1980a luôn có chữ số tận cùng là 0 vì 0 nhân với số nào cũng đều có chữ số tận cùng là 0
1995b sẽ có chữ số tận cùng là 0 nếu b là số chẵn và ngược lại, 1995b sẽ có chữ số tận cùng là 5 nếu b là số lẻ
Từ đó => 1980a-1995b có tận cùng là : 0-5 = 5 hoặc 0-0= 0
Mà số có chữ số tận cùng là 0 hoặc 5 thì đều chia hết cho 5
Vậy 1980a-1995b chia hết cho 5 với mọi a,b thuộc N (1)
Ta có: 1980 chia hết cho 3 => 1980a cũng chia hết cho 3 với mọi a
1995 chia hết cho 3 => 1995b cũng chia hết cho 3 với mọi b
Vậy 1980a-1995b chia hết cho 3 với mọi a,b thuộc N (2)
Từ (1) và (2) => 1980a-1995b chia hết cho 3 và 5 với mọi a,b thuộc N
=> ĐPCM
_HT_
a)
10^33 có dạng 10...0
=> 10^33 + 8 có dạng 10...08 chia hết cho 2
=> tổng các chữ số của nó là 1 + 8 = 9 chia hết cho 9
b) c) d) tương tự
a) 10 mủ mấy cũng chỉ có số 0 và 1
\(\Rightarrow\)( 1033 + 8 ) sẽ chia hết cho 2 ( vì 1033 + 8 có chữ số tận cùng là 8 )
( 1033 + 8 ) sẽ chia hết cho 9 ( vì tổng các số hạng của số là 1 + 0 + 0 + 0.....+8 = 9 chia hết cho 9 )
b) 10 mủ mấy cũng chỉ có số 0 và 1
\(\Rightarrow\)( 10100 + 14 ) sẽ chia hết cho 2 ( vì 10100 + 14 có chữ số tận cùng là 4 )
( 10100 + 14 ) sẽ chia hết cho 3 ( vì tổng các số hạng của số là 1 + 0 + 0 + 0 +....+ 1 + 4 = 6 chia hết cho 3 )
d) với mọi n thuộc N thì 4 x 10n + 23 cũng sẽ chia hết cho 9
Vì tích của 4 và 10n sẽ có các số hạng của tích là 4 và 0
cộng cho 23 sẽ có các số hạng của tổng là 4; 0; 2; 3
Tổng của 4 + 0 + 2 + 3 = 9 chia hết cho 9
\(\Rightarrow\)Với mọi n thuộc N đều 4 x 10n + 23 chia hết cho 9
Câu b mk hông biết bạn tự làm nha
Hk tốt
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi
Ta có: 60n chia hết cho 15 và 45 chia hết cho 15 => 60n + 45 chia hết cho 15
lại có: 60n chia hết cho 30 và 45 không chia hết cho 30 => 60n +45 không chia hêt cho 30
Ta có: 60n chia hết cho 15 (vì 60 chia hết cho 15)
45 chia hết cho 15
\(\Rightarrow\) 60n + 45 chia hết cho 15
Ta có: 60n chia hết cho 30 ( vì 60 chia hết cho 30)
45 không chia hết cho 30
\(\Rightarrow\) 60n + 45 không chia hết cho 30
Vậy với mọi n \(\in\) N thì 60n+45 chia hết cho 15 nhưng không chia hết cho 30
CÓ GÌ SAI SÓT MONG BẠN LƯỢNG THỨ