Tìm số nguyên x, nếu biết:
a.32x+2=910
b.33x-=2713
c.2x=46.163
d.2x=325.646
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta đặt \(f\left(x\right)=\left(x^2-2x+b\right)\left(8x^2+cx+d\right)\)
Phân tích ra được \(8x^4-9x^3+a^2+33x-18=8x^4-x^3\left(16-c\right)+x^2\left(d+b\right)+x\left(bc-2d\right)+bd\)
Sử dụng đồng nhất hệ thức : \(16-c=9\); \(d+b=0\) ; \(bc-2d=33\) ; \(a^2-18=bd\)
Giải ra được \(a=-\frac{\sqrt{41}}{3},b=\frac{11}{3}\) hoặc \(a=\frac{\sqrt{41}}{3},b=\frac{11}{3}\)
a.
\(10-2\left(4-3x\right)=-4\)
\(\Leftrightarrow2\left(4-3x\right)=10+4\)
\(\Leftrightarrow2\left(4-3x\right)=14\)
\(\Leftrightarrow4-3x=7\)
\(\Leftrightarrow3x=-3\)
\(\Leftrightarrow x=-1\)
b.
\(-12+3\left(-x+7\right)=-18\)
\(\Leftrightarrow3\left(-x+7\right)=-18+12=-6\)
\(\Leftrightarrow-x+7=-6:3=-2\)
\(\Leftrightarrow x=9\)
c.
\(-45:5.\left(-3-2x\right)=3\)
\(\Leftrightarrow-9.\left(-3-2x\right)=3\)
\(\Leftrightarrow-3-2x=-\dfrac{1}{3}\)
\(\Leftrightarrow2x=-\dfrac{8}{3}\)
\(\Leftrightarrow x=-\dfrac{4}{3}\notin Z\left(loại\right)\)
Câu này em ghi sai đề?
d.
\(3x-28=x+36\)
\(\Leftrightarrow2x=28+36\)
\(\Leftrightarrow2x=64\)
\(\Leftrightarrow x=32\)
e.
\(\left(-12\right)^2.x=56+10.13x\)
\(\Leftrightarrow144x=56+130x\)
\(\Leftrightarrow144x-130x=56\)
\(\Leftrightarrow14x=56\)
\(\Leftrightarrow x=4\)
a) 22 + (2x -13) = 83 => 2x -13 = 61 => x = 37.
b) 51 - (-12 + 3x) = 27 => 63 - 3x = 27 => x = 12.
c) - (2x + 2) + 21 = - 23 => 2x + 2 = 44 => x = 21.
d) 25 - (25 - x) = 0 => 25 - 25 + x = 0 => x = 0.
\(1,\\ a,2^x=16=2^4\Rightarrow x=4\\ b,3^{x+1}=9^x=3^{2x}\\ \Rightarrow x+1=2x\Rightarrow x=1\\ c,2^{3x+2}=4^{x+5}=2^{2\left(x+5\right)}\\ \Rightarrow3x+2=2x+10\Rightarrow x=8\\ d,3^{2x-1}=243=3^5\\ \Rightarrow2x-1=5\Rightarrow x=3\\ 2,\\ a,2^{225}=8^{75}< 9^{75}=3^{150}\\ b,2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\\ c,99^{20}=\left(99^2\right)^{10}< \left(99\cdot101\right)^{10}=9999^{10}\\ 3,\\ a,12^8\cdot9^{12}=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}=\left(2\cdot3^2\right)^{16}=18^{16}\\ b,75^{20}=\left(3\cdot5^2\right)^{20}=3^{20}\cdot5^{40}=\left(3^{20}\cdot5^{10}\right)\cdot5^{30}=\left(3^2\cdot5\right)^{10}\cdot5^{30}=45^{10}\cdot5^{30}\)
Bài 1:
a) \(\Rightarrow2^x=2^4\Rightarrow x=4\)
b) \(\Rightarrow3^{x+1}=3^{2x}\Rightarrow x+1=2x\Rightarrow x=1\)
c) \(\Rightarrow2^{3x+2}=2^{2x+10}\Rightarrow3x+2=2x+10\Rightarrow x=8\)
d) \(\Rightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow x=3\)
Bài 2:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Bài 3:
a) \(12^8.9^{12}=\left(4.3\right)^8.9^{12}=4^8.3^8.9^{12}=2^{16}.9^4.9^{12}=2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\)
b) \(75^{20}=\left(75^2\right)^{10}=5625^{10}=\left(45.125\right)^{10}=45^{10}.125^{10}=45^{10}.5^{30}\)
a, \(3^{2x+2}=9^{10}\\ 3^{2x+2}=\left(3^2\right)^{10}\\ 3^{2x+2}=3^{20}\\ \Rightarrow2x+2=20\\ \Rightarrow2x=18\\ \Rightarrow x=9\)Vậy x = 9
b, \(3^{3x}=27^{13}\\ 3^{3x}=\left(3^3\right)^{13}\\ 3^{3x}=3^{39}\\ \Rightarrow3x=39\\ \Rightarrow x=13\)Vậy x = 13
c, \(2^x=4^6\cdot16^3\\ 2^x=\left(2^2\right)^6\cdot\left(2^4\right)^3\\ 2^x=2^{12}\cdot2^{12}\\ 2^x=2^{24}\\ \Rightarrow x=24\)Vậy x = 24
d, \(2^x=32^5\cdot64^6\\ 2^x=\left(2^5\right)^5\cdot\left(2^6\right)^6\\ 2^x=2^{25}\cdot2^{36}\\ 2^x=2^{61}\\ \Rightarrow x=61\)Vậy x = 61