Mấy chế là BLINK vào giúp mị đi!
Cho tam giác ABC và D thuộc BC. Trên nửa mặt phẳng bờ AB chứa C, kẻ hai tia Ax song song với By. Biết Ax là tia phân giác của góc DAC. Chứng minh rằng góc ACB+ADB=2CBy
Vẽ hình hộ chế nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
CD//Ax(gt)CD//Ax(gt)
⇒ ˆACD=ˆCAxACD^=CAx^ (so le trong)
ˆBAx=ˆADCBAx^=ADC^ (đồng vị)
mà ˆCAx=ˆBAx=ˆBAC2(gt)CAx^=BAx^=BAC^2(gt)
⇒ ˆBAx=ˆADC=ˆACD
nhớ tích choa mik với
a) Ta có:
CD//Ax(gt)CD//Ax(gt)
⇒ ˆACD=ˆCAxACD^=CAx^ (so le trong)
ˆBAx=ˆADCBAx^=ADC^ (đồng vị)
mà ˆCAx=ˆBAx=ˆBAC2(gt)CAx^=BAx^=BAC^2(gt)
⇒ ˆBAx=ˆADC=ˆACD
nhớ tích cho mik nha
a) Vì ax là tia phân giác của góc bac nên bax=xac(1)
Vì ax//cd => xac và dca là hai góc so le trong=>xac=acd (2)
Vì bax và adc là hai góc đồng vị =>bax=adc(3)
Từ (1), (2) và (3) => xab=adc=acd (đpcm)
Xin lỗi vì chỉ mới làm đc câu a nhé =))