K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc
b. Ngược lại nếu a.d < b.c thì Ta có thể viết: 
Bài 2: a. Chứng tỏ rằng nếu (b > 0; d > 0) thì 
b. Hãy viết ba số hữu tỉ xen giữa và 
Giải: a) Theo bài 1 ta có: (1)
Thêm a.b vào 2 vế của (1) ta có: a.b + a.d < b.c + a.b
a(b + d) < b(c + a) (2)
Thêm c.d vào 2 vế của (1): a.d + c.d < b.c + c.d
d(a + c) < c(b + d) (3) Từ (2) và (3) ta có: 

            a.d<b.c

Chúc bạn học tốt!!!! ^-^

27 tháng 8 2015

Ta có : \(\frac{a}{b}<\frac{c}{d}\Rightarrow\frac{ad}{bd}<\frac{cb}{bd}\)

\(\Rightarrow\)\(ad\)\(<\)\(cb\) (vì \(bd>0\))  \(\left(1\right)\)

\(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)

\(\frac{a+c}{b+d}=\frac{\left(a+c\right)b}{\left(b+d\right)b}=\frac{ab+cb}{b\left(b+d\right)}\)

vì \(b,d>0\Rightarrow b\left(b+d\right)>0\)   \(\left(1\right)\)

vì \(ad\)\(<\)\(cd\Rightarrow\)\(ab+ad\)\(<\)\(ab+cb\)   \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\)  \(\Rightarrow\) \(\frac{ab+ad}{b\left(b+d\right)}<\frac{ab+cb}{b\left(b+d\right)}\)

  hay \(\frac{a}{b}<\frac{a+c}{b+d}\) \(\left(\cdot\right)\)

    \(\frac{a+c}{b+d}=\frac{d\left(a+c\right)}{d\left(b+d\right)}=\frac{ad+cd}{d\left(b+d\right)}\)

     \(\frac{c}{d}=\frac{c\left(b+d\right)}{d\left(b+d\right)}=\frac{cb+cd}{d\left(b+d\right)}\)

Vì \(ad\)\(<\)\(cd\Rightarrow\)\(ad+cd<\)\(cb+cd\)    \(\left(3\right)\)

Từ \(\left(1\right)\) và \(\left(3\right)\) \(\Rightarrow\frac{ad+cd}{d\left(b+d\right)}<\frac{cb+cd}{d\left(b+d\right)}\)

     hay \(\frac{a+c}{b+d}<\frac{c}{d}\)    \(\left(\cdot\cdot\right)\)

Từ \(\left(\cdot\right)\) và \(\left(\cdot\cdot\right)\Rightarrow\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)

 

23 tháng 8 2020

dễ quá !!!

25 tháng 6 2016

Ta có:a/b<c/d =>ad<bc                    (1)

Thêm ab vào (1) ta đc:

ad+ab<bc+ab hay a(b+d)<b(a+c) =>a/b<a+c/b+d             (2)

Thêm cd vào 2 vế của (1), ta lại có:

ad+cd<bc+cd hay d(a+c)<c(b+d) => c/d>a+c/b+d               (3)

Từ (2) và (3) suy ra:a/b<a+c/b+d<c/d

22 tháng 7 2017

ta có:a/b<c/d nên ad<bc

(1)ab+ad<ab+bc=a(b+d)<b(a+c)=>a/b<a+c/b+d(thêm ab vào hai vế)

(2)ad+cd<bc+cd=(a+c)d<(b+d)c=>a+c/b+d<c/d(thêm cd vào hai vế)

từ(1)và(2)ta có:a/b<a+c/b+d<c/d

10 tháng 1 2017

Ta đã biết:

\(ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\) (1)

Theo (1) có: \(ad< bc\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)

Chứng minh tương tự với trường hợp ngược lại, có \(\frac{a}{b}>\frac{c}{d}\)

10 tháng 1 2017

sai hoan toan