Cho A=1/1.2+1/3.4+...+1/99.100. Chứng minh rằng: 25/75+25/100< A< 25/75+25/51. Giúp mink rồi mink cho người đầu tiên like ????...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a 475 - ( 75 + 36 ) = 475 - 75 - 36
= 400 - 36
= 364
b 821 - 73 - 27 - 21
= ( 821 - 21 ) - ( 73 + 27 )
= 800 - 100
= 700
a ) 475 - ( 75 + 36 )
= 475 - ( 75 + 35 ) - 1
= ( 475 - 1 ) - 100
= 474 - 100 = 374
b ) 821 - 73 - 27 - 21
= ( 821 - 21 ) - ( 73 + 27 )
= 800 - 100
= 700
c ) \(\frac{37}{25}\div\frac{5}{4}\div\frac{74}{25}\)
\(=\frac{37\cdot2\cdot2\cdot25}{25\cdot5\cdot37\cdot2}\)
\(=\frac{2}{5}\)
Đầu tiên ta phân tích A
A = 1/1-1/2+1/3-1/4+...+1/99-1/100
sau đó chia vế A thành 2 phần
A = (1/1+1/3+...+1/99) - (1/2+1/4+...+1/100)
gọi (1/1+1/3+...+1/99) = a
gọi (1/2+1/4+...+1/100) = b
áp dụng tính chất (a-b) = (a+b) - 2b
=> A = (1/1+1+2+1/3+1/4+...+1/99+1/100) - 2(1/2+1/4+...+1/100)
=> A = (1/1+1+2+1/3+1/4+...+1/99+1/100) - (1/1+1/2+...+1/50)
=> A = 1/1-1/1+1/2-1/2+...+1/50-1/50+1/51+1/52+...+1/100
=> A = 1/51+1/52+...+1/100
vậy A / B = \(\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{2011}{51}+\frac{2011}{52}+...+\frac{2011}{100}}=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{2011\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}=2011\)
mà 2011 là số nguyên => (dpcm)
>>Dat Doan hơi nhầm nè, bạn phải ghi B/A chứ ko phải A/B; thành ra mới bằng 2011 chứ nếu A/B=1/2011 đó!!!
đặt S=1+4+42+......+41999S=1+4+42+......+41999
⇒4S=4+42+43+....+42000⇒4S=4+42+43+....+42000
⇒4S−S=(4+42+43+....+42000)−(1+4+42+.....+41999)⇒4S−S=(4+42+43+....+42000)−(1+4+42+.....+41999)
⇒3S=42000−1⇒S=42000−13⇒3S=42000−1⇒S=42000−13
Khi đó A=75.S=75.42000−13=75.(42000−1)3=753.(42000−1)=25.(42000−1)=25.42000−25A=75.S=75.42000−13=75.(42000−1)3=753.(42000−1)=25.(42000−1)=25.42000−25
Ta có: 42000-1=(44)500-1=(...6)-1=....5
=>25.42000-25=25.(....5)-25=(...5)-25=....0 chia hết cho 100
Vậy ta có điều phải chứng minh
Trong các phép chia sau, phép chia nào là phép chia hết, phép chia nào là phép chia có dư?
Viết kết quả phép chia dạng a = b.q+ r, với 0≤≤ r < b.
a) 144: 3; b) 144: 13; c) 144: 30.
Phương pháp: Viết kết quả phép chia dạng a = b.q+ r, với 0≤≤ r < b.
Nếu r = 0 thì phép chia hết, nếu 0< r < b thì phép chia có dư
Lời giải chi tiết
144 = 3.48 + 0
=> Phép chia hết
b) 144 = 13.11 + 1
=> Phép chia có dư
c) 144 = 30.4 + 24
=> Phép chia có dư
Bạn làm toàn bộ bài giùm mink nha. Thank you