K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-\frac{2\left(x+1\right)}{\left(x+1\right).3x}-\frac{2\left(-x-1\right)}{x+1}\right]:\frac{x-1}{x}\)

\(=\)\(\left[\frac{2}{3x}-\frac{2\left(x+1\right)}{\left(x+1\right).3x}+\frac{2\left(x+1\right)}{x+1}\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-\frac{2}{3x}+2\right]:\frac{x-1}{x}\)

\(=2.\frac{x}{x-1}=\frac{2x}{x-1}\)\(\left(đpcm\right)\)

NV
2 tháng 6 2019

ĐKXĐ:...

\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}=\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{-3x^2-2x+1}{3x}\right)\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-\frac{2\left(x+1\right)\left(1-3x\right)}{3x\left(x+1\right)}\right].\frac{x}{x-1}=\left(\frac{2}{3x}-\frac{2\left(1-3x\right)}{3x}\right).\left(\frac{x}{x-1}\right)\)

\(=\left(\frac{2-2+6x}{3x}\right)\left(\frac{x}{x-1}\right)=\frac{2x}{x-1}\)

24 tháng 11 2019

b) \(\left[\frac{2}{3x}-\frac{2}{x+1}.\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-\frac{2}{x+1}.\left(\frac{x+1}{3x}-\left(x+1\right)\right)\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-\frac{2}{x+1}.\left(x+1\right)\left(\frac{1}{3x}-1\right)\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-2\left(\frac{1}{3x}-1\right)\right]:\frac{x-1}{x}\)

\(=\left[\frac{2}{3x}-\frac{2}{3x}+2\right]:\frac{x-1}{x}\)

\(=2.\frac{x}{x-1}=\frac{2x}{x-1}\left(đpcm\right)\)

24 tháng 11 2019

a) \(\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)

\(=\left(\frac{9}{x\left(x^2-9\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\left(\frac{9}{x\left(x+3\right)\left(x-3\right)}+\frac{x^2-3x}{x\left(x+3\right)\left(x-3\right)}\right)\)

\(:\left(\frac{3x-9}{3x\left(x+3\right)}-\frac{x^2}{3x\left(x+3\right)}\right)\)

\(=\frac{x^2-3x+9}{x\left(x+3\right)\left(x-3\right)}:\frac{-x^2+3x-9}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x+3\right)\left(x-3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}\)

\(=\frac{x^2-3x+9}{x-3}.\frac{3}{x^2+3x-9}\)

\(=\frac{x^2-3x+9}{3-x}.\frac{3}{x^2-3x+9}\)

\(=\frac{3}{3-x}\left(đpcm\right)\)

12 tháng 6 2017

\(VT=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(VT=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(VT=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}:\frac{-x^2+3x-9}{3x\left(x+3\right)}\)

\(VT=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{-3x\left(x+3\right)}{x^2-3x+9}\)\(=\frac{-3}{x-3}\)

\(VT=\frac{-3}{x-3}=\frac{3}{3-x}=VP\)

\(\Rightarrow dpcm\)

TK NHA !!! Vì ko có thời gian nên làm hơi tắt !!!

cau a dau nhi cuoi cung k phai j dau nha ! mk an lom ! 

28 tháng 9 2017

\(a,\)\(\left|x+5\right|=\frac{1}{7}-\left|\frac{4}{3}-\frac{1}{6}\right|\)

 \(\Leftrightarrow\left|x+5\right|=\frac{1}{7}-\frac{7}{6}\)

\(\Leftrightarrow\left|x+5\right|=\frac{-43}{42}\)

ta có |x+5| \(\ge\)\(\forall x\)

Mà \(-\frac{43}{42}< 0\)nên ko có giá trị x thoả mãn

b,

 \(\left|x+\frac{2}{3}\right|=\frac{1}{2}-\left(\frac{1}{4}+\frac{2}{3}\right)\)

\(\Leftrightarrow\left|x+\frac{2}{3}\right|=\frac{11}{12}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{2}{3}=\frac{11}{12}\forall x\ge-\frac{2}{3}\\-x-\frac{2}{3}=\frac{11}{12}\forall< -\frac{2}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=-\frac{19}{12}\end{cases}}\)(thoả mãn đk)

31 tháng 7 2019

1) \(\left(x-2\right)\left(\frac{x+1}{3}-x+1\right)=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{3}-x^2+x-\frac{2\left(x+1\right)}{3}+2x-2=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{3}-x^2+3x-\frac{2\left(x+1\right)}{3}-2=0\)

\(\Leftrightarrow x\left(x+1\right)-3x^2+9x-2\left(x+1\right)-6=0\)

\(\Leftrightarrow x^2+x-3x^2+9x-2x-2-6=0\)

\(\Leftrightarrow-2x^2+8x-8=0\)

\(\Leftrightarrow-2\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow-2.\left(x^2-2.x.2+2^2\right)=0\)

\(\Leftrightarrow-2\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy nghiệm của phương trình là: {2}

2) \(\left(3x+4x\right)\left(\frac{x}{2}-x-\frac{3x}{5}+1\right)=0\)

\(\Leftrightarrow7x\left(\frac{x}{2}-x-\frac{3x}{5}+1\right)=0\)

\(\Leftrightarrow7x\left(-\frac{11x}{10}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}7x=0\\-\frac{11x}{10}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{11}{10}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{10}{11}\end{cases}}\)

Vậy: nghiệm của phương trình là: \(\left\{0;\frac{10}{11}\right\}\)

3) \(\left|x-1\right|=x^2-x\)

\(\Leftrightarrow x-1=x^2-x\)

\(\Leftrightarrow1=x^2-x-x\)

\(\Leftrightarrow1=x^2\)

\(\Leftrightarrow x^2=1\)

\(\Rightarrow x=\pm1\)

Vậy nghiệm phương trình là: {1; -1}

4) \(\left|x^2-3x+1\right|=2x-3\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-3x+1=2x-3\\x^2-3x+1=-\left(2x-3\right)\end{cases}}\)

Xét  trường hợp này rồi làm tiếp, dễ rồi :))

25 tháng 12 2018

\(\left(\frac{1}{x}+1-\frac{3}{x^3+1}-\frac{3}{x^2-x+1}\right)\cdot\frac{3x^2-3x+3}{\left(x+1\right).\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)

\(=\left(\frac{x+1}{x}-\frac{3}{\left(x+1\right).\left(x^2-x+1\right)}+\frac{3.\left(x+1\right)}{\left(x+1\right).\left(x^2-x+1\right)}\right)\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)

\(=\left[\frac{\left(x+1\right)^2.\left(x^2-x+1\right)-3x+3x^2+3x}{x.\left(x+1\right).\left(x^2-x+1\right)}\right]\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)

\(=\left[\frac{x^4+x^3+x+1+3x^2}{x.\left(x+1\right).\left(x^2-x+1\right)}\right]\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)

\(=\frac{3x^4+3x^3+3x+3+9x^2}{x.\left(x+1\right)^2.\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}=\frac{3x^4+3x^3+3x+3+9x^2}{x.\left(x+1\right)^2.\left(x+2\right)}-\frac{2x^3+2x^2-2x-2}{x.\left(x+1\right)^2.\left(x+2\right)}\)

\(=\frac{3x^4+x^3+7x^2+5x+5}{x.\left(x+1\right)^2.\left(x+2\right)}\)