Tìm điểm M biết điểm N (-3;10) là ảnh của M qua phép tịnh tiến vecto v (4;1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,M\left(-2;2\right)\in\left(d\right)\Leftrightarrow-2\left(m-2\right)+1=2\Leftrightarrow m=\dfrac{3}{2}\\ b,N\left(-3;4\right)\in\left(d\right)\Leftrightarrow-3\left(m-2\right)+1=4\Leftrightarrow m=1\\ c,\left(d\right)\cap Ox=\left(5;0\right)\Leftrightarrow5\left(m-2\right)+1=0\Leftrightarrow m=\dfrac{9}{5}\\ d,\left(d\right)\cap Oy=\left(0;-2\right)\Leftrightarrow1=-2\Leftrightarrow m\in\varnothing\\ e,\left(d\right)//\left(d'\right)\Leftrightarrow m-2=3\Leftrightarrow m=5\)
Cho điểm M(-4;2) và vecto v =(3;-1). Tìm điểm N biết M là ảnh của N qua phép tịnh tiến theo vecto v.
\(T_{\overrightarrow{v}}\left(N\right)=M\Rightarrow\overrightarrow{NM}=\overrightarrow{v}\)
\(\Rightarrow\left\{{}\begin{matrix}x_N+3=-4\\y_N-1=2\end{matrix}\right.\) \(\Rightarrow N\left(-7;3\right)\)
2
a)
d đi qua A (1;2), B(2;5)
=> Ta có hệ phương trình: \(\left\{{}\begin{matrix}\left(m-1\right).1+n=2\\\left(m-1\right).2+n=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+n=3\\2m+n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=4\\n=-1\end{matrix}\right.\)
b)
d có hệ số góc a = 3 => d: y = 3x + n
=> m -1 = 3 <=> m = 4
d cắt Ox tại x = -2, y = 0 \(\Leftrightarrow0=3.\left(-2\right)+n\) => n = 6
c)
d trùng d' \(\Rightarrow\left\{{}\begin{matrix}m-1=5\\n=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=6\\n=-3\end{matrix}\right.\)
*Đường thẳng ( d 1 ): ax + 2y = -3 đi qua điểm M(3; 9) nên tọa độ điểm M nghiệm đúng phương trình đường thẳng.
Ta có: a.3 + 2.9 = -3 ⇔ 3a + 18 = -3 ⇔ 3a = -21 ⇔ a = -7
Phương trình đường thẳng ( d 1 ): -7x + 2y = -3
*Đường thẳng ( d 2 ): 3x – by = 5 đi qua điểm N(-1; 2) nên tọa độ điểm N nghiệm đúng phương trình đường thẳng.
Ta có: 3.(-1) – b.2 = 5 ⇔ -3 – 2b = 5 ⇔ 2b = -8 ⇔ b = -4
Phương trình đường thẳng ( d 2 ): 3x + 4y = 5
*Tọa độ giao điểm của ( d 1 ) và ( d 2 ) là nghiệm của hệ phương trình:
\(T_{\overrightarrow{v}}\left(N\right)=M\left(x',y'\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x'=x+a=-3+4=1\\y'=y+b=10+1=11\end{matrix}\right.\)
\(\Rightarrow M\left(1;11\right)\)