\(\Delta ABC\) có \(\widehat{B}=60^0,BC=8cm,AB+AC=12cm.Tính\) độ dài cạnh AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ BH vuông góc với AC
Theo định lý Pythagore, ta có:
BC2=BH2+CH2=BH2+(AC-AH)2
=BH2+AH2+AC2-2AC.AH
Mà ta lại có:AH2+BH2=AB2 (định lý Pythagore, tam giác ABH vuông tại H)
và AH=1/2AB (do tam giác ABH là nửa tam giác đều)
Cho nên: BC2=AB2+AC2-2.1/2AB.AC=AB2+AC2-AB.AC (*)
Thay AB=28cm, AC=35cm vào (*), ta được:
BC2=1029=>BC=7\(\sqrt{21}\)cm
Vậy BC=7\(\sqrt{21}\)cm
Kẻ \(AH\perp BC\left(H\in BC\right)\)
Ta đặt AB = x => \(AH=x.sin_B=x.sin_{60}=x.\frac{\sqrt{3}}{2}\)
\(BH=x.cos_B=x.cos_{60}=\frac{x}{2}\Rightarrow HC=BC-BH=8-\frac{x}{2}=\frac{16-x}{2}\)
\(\Rightarrow AC=12-AB=12-x\)
Tam giác AHC vuông tại H, áp dụng định lý Pytago, ta có:
\(AH^2+HC^2=AC^2\Leftrightarrow\left(x.\frac{\sqrt{3}}{2}\right)^2+\left(\frac{16-x}{2}\right)^2=\left(12-x\right)^2\)
\(\Leftrightarrow3x^2+\left(16-x\right)^2=4\left(12-x\right)^2\Leftrightarrow x=5\)
Vậy AB = 5 cm
Mk giải theo cách này nha
X là cạnh AB => AC = 12-X
áp dụng Hệ quả của định lí hàm cos ta có :
\(sin\left(\widehat{B}\right)=\frac{BC^2+AB^2-AC^2}{2\cdot BC\cdot AB}\)
\(\Leftrightarrow sin\left(60\right)=\frac{8^2+x^2-\left(12-x\right)^2}{2\cdot8\cdot x}\)
Dùng Shift slove
=> \(x\approx7,8868cm\)
hok tốt .
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}=75^o\)
* \(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\Rightarrow AB=\dfrac{BCsinC}{sinA}=a\left(1+\sqrt{3}\right)\)
* \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\Rightarrow AC=\dfrac{BCsinB}{sinA}=a\left(\dfrac{-6+3\sqrt{2}}{2}\right)\)
Lời giải:
Kẻ $AH\perp BC$. $(H\in BC)$
Xét tam giác $ABH$ có:
$\frac{BH}{AB}=\cos 60^0=\frac{1}{2}$
$\Rightarrow AB=2BH$
Áp dụng định lý Pitago:
$AH^2=AB^2-BH^2=(2BH)^2-BH^2=3BH^2(1)$
$AH^2=AC^2-CH^2=(12-AB)^2-(8-BH)^2$
$=(12-2BH)^2-(8-BH)^2=3BH^2-32BH+80(2)$
Từ $(1);(2)$ suy ra $3BH^2=3BH^2-32BH+80$
$\Rightarrow BH=2,5$ (cm)
$\Rightarrow AB=2BH=5$ (cm)