K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2016

a, ko có số n thỏa mãn

b, n^2+2006 là hợp số với n là số nguyên tố lớn hơn 3

16 tháng 4 2016

a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.

28 tháng 2 2016

do m ;m+k ; m+2k là số nguyên tố >3

=> m;m+k;m+2k lẻ

=> 2m+k chẵn =>k⋮⋮ 2

mặt khác m là số nguyên tố >3 

=> m có dạng 3p+1 và 3p+2(p∈∈ N*)

xét m=3p+1

ta lại có k có dạng 3a ;3a+1;3a+2(a∈∈ N*)

với k=3a+1 ta có 3p+1+2(3a+1)=3(p+1+3a) loại vì m+2k là hợp số 

với k=3a+2 => m+k= 3(p+a+1) loại

=> k=3a

tương tự với 3p+2

=> k=3a

=> k⋮⋮3

mà (3;2)=1

=> k⋮⋮6

 a^4 - 1 = (a²-1)(a²+1) 

* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0 
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3 
=> a^4 - 1 chia hết cho 3 

* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4 
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4 
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5 
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5 
=> a^4 - 1 chia hết cho 5 
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1 
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2) 
a^4 - 1 = 8(m)(m+1)(2m²+2m+1) 
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16 

từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240 

ta có khai triển: 
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p 

ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p 
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240 

         Lần sau ghi dấu nhé pn !

 a^4 - 1 = (a²-1)(a²+1) 

* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0 
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3 
=> a^4 - 1 chia hết cho 3 

* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4 
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4 
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5 
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5 
=> a^4 - 1 chia hết cho 5 
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1 
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2) 
a^4 - 1 = 8(m)(m+1)(2m²+2m+1) 
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16 

từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240 

ta có khai triển: 
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p 

ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p 
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240 .

             Lần sau ghi dấu nhé pn !

10 tháng 2 2016

 a^4 - 1 = (a²-1)(a²+1) 

* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0 
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3 
=> a^4 - 1 chia hết cho 3 

* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4 
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4 
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5 
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5 
=> a^4 - 1 chia hết cho 5 
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1 
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2) 
a^4 - 1 = 8(m)(m+1)(2m²+2m+1) 
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16 

từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240 

ta có khai triển: 
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p 

ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p 
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240 

11 tháng 11 2017

Vậy: a+b = 3+7

Chứng minh: P=a+b => 3+7= 10

Mà 10 là hợp số