Cho a,b,c > 0
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+a}\ge3\)
CM; \(abcd< \frac{1}{81}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a,b>0\) (1)
Thật vậy : BĐT (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng )
Vì vậy BĐT (1) đúng.
Áp dụng vào bài toán ta có:
\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)
\(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Vậy ta có điều phải chứng minh !
Bài 1 :
Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)
Cộng theo từng vế
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)
Theo bất đẳng thức Cô-Si ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=\frac{a+b}{ab}+\frac{2}{a+b}=a+b+\frac{2}{a+b}=\frac{a+b}{2}+\left(\frac{a+b}{2}+\frac{2}{a+b}\right)\)
\(\ge\sqrt{ab}+2\sqrt{\frac{a+b}{2}\cdot\frac{2}{a+b}}=1+2=3.\) (ĐPCM)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{c+a}\geq \frac{9}{b+c+c+a+c+a}=\frac{9}{3c+2a+b}\)
\(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{a+b}\geq \frac{9}{a+c+a+b+a+b}=\frac{9}{3a+2b+c}\)
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{b+c}\geq \frac{9}{a+b+b+c+b+c}=\frac{9}{3b+2c+a}\)
Cộng theo vế rồi rút gọn ta thu được
\(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\geq 3\left(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\right)\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
a,b,c phải dương thì đề bài mới đúng.
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge3.3\)(vì a+b+c=3)
\(\Leftrightarrow1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1\ge9\)
\(\Leftrightarrow\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge6\)(1)
Mặt khác, \(\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\)
Do đó bất đẳng thức (1) đúng mà các phép biến đổi trên là tương đương nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)
Chúc bạn học tốt.
\(\frac{3}{a+2b}=\frac{3}{a+b+b}\le\frac{3}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{2}{b}\right)\)
Tương tự: \(\frac{3}{b+2c}\le\frac{1}{3}\left(\frac{1}{b}+\frac{2}{c}\right)\) ; \(\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{c}+\frac{2}{a}\right)\)
Cộng vế với vế:
\(3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\le\frac{1}{3}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Bài làm:
Áp dụng Cauchy dạng cộng mẫu ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\left(1\right)\)
\(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{9}{b+2c}\left(2\right)\)
\(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\ge\frac{9}{c+2a}\left(3\right)\)
Cộng vế 3 bất đẳng thức (1);(2); và (3) ta được:
\(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
Dấu "=" xảy ra khi: \(a=b=c\)
Học tốt!!!!
Sử dụng kĩ thuật Cauchy ngược dấu
Ta có: \(\frac{a+1}{b^2+1}=\frac{ab^2+a+b^2+1-ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b\left(a+1\right)}{2}\)
Tương tự \(\frac{b+1}{c^2+1}\ge b+1-\frac{c\left(b+1\right)}{2}\)
\(\frac{c+1}{a^2+1}\ge c+1-\frac{a\left(c+1\right)}{2}\)
\(\Rightarrow VT\ge3-\frac{a+b+c-ab-bc-ca}{2}\ge3\)
Dấu "=" xảy ra khi a=b=c=1
Ta có
\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{ab^2+b^2}{b^2+1}\ge\left(a+1\right)-\frac{ab^2+b^2}{2b}=\left(a+1\right)-\frac{ab+b}{2}\) (1)
Tương tự \(\frac{b+1}{c^2+1}\ge\left(b+1\right)-\frac{bc+c}{2}\) (2)
và \(\frac{c+1}{a^2+1}\ge\left(a+1\right)-\frac{ca+a}{2}\) (3)
Cộng (1), (2), (3) vế theo vế:
\(VT\ge\left(a+b+c+3\right)-\frac{\left(ab+bc+ca\right)+\left(a+b+c\right)}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}=3\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
https://olm.vn/hoi-dap/detail/223126660207.html?pos=512235459592
Giờ mình mới để ý , câu này có trong chuyên đề : Bất đẳng thức Cauchy (Cô si) của cô Nguyễn Linh Chi (ở phần dạng toán và hướng dẫn giải) (mình đã inbox link cho bạn rồi)
Còn đề bạn viết sai rồi nhé