Chứng minh rằng số \(A=\frac{1}{3}\).( 11....1 - 33...3 00...0 ) là lập phương của một số tự nhiên .
(n số 1 ) ( n số 3 ) ( n số )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo nhé : https://olm.vn/hoi-dap/detail/6458573715.html
Ta có:
\(\left(10^{53}\right)^3<10^{150}+5.10^{50}+1<10^{150}+3.\left(10^{50}\right)^2+1\)
\(=\left(10^{50}+1\right)^3\)
Vậy \(10^{150}+5.10^{50}+1\) không là lập phương của 1 số tự nhiên
~ Hok tốt ~
Đặt \(X=\sqrt[3]{4798655-27n}\) với \(20349< n< 47238\)
\(\Rightarrow X^3=A\)thoả mãn \(3514229< 4789655-27n< 4240232\) hay \(351429< X^3< 4240232\)
Tức là: \(152,034921< X< 161,8563987\)
Do X là số tự nhiên nên X chỉ có thể bằng 1 trong các số sau: 153; 154; 155; .... ; 160; 161
Vì: \(X=\sqrt[3]{478965-27n}\) nên \(n=\frac{478965-X^3}{27}\)
Ghi công thức tính trên n
Máy: \(X=X+1:=\frac{478965-X^3}{27}\)
Cho đến khi nhận được các giá trị.
Nguyên dương tương ứng được: \(X=158\Rightarrow A=393944312\)
Với x bắt đầu là 153
P/s: Bn cũng có thể giải bài này bằng máy tính Casio fx-570MS