cho a nto lon hon 5
chung to A=[a2-1] [a2+1]chia het cho 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^4 - 1 = (a²-1)(a²+1)
* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3
=> a^4 - 1 chia hết cho 3
* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5
=> a^4 - 1 chia hết cho 5
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2)
a^4 - 1 = 8(m)(m+1)(2m²+2m+1)
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16
từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240
ta có khai triển:
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p
ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240
Lần sau ghi dấu nhé pn !
a^4 - 1 = (a²-1)(a²+1)
* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3
=> a^4 - 1 chia hết cho 3
* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5
=> a^4 - 1 chia hết cho 5
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2)
a^4 - 1 = 8(m)(m+1)(2m²+2m+1)
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16
từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240
ta có khai triển:
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p
ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240 .
Lần sau ghi dấu nhé pn !
a^4 - 1 = (a²-1)(a²+1)
* bình phương của 1 số nguyên chia 3 dư 1 hoặc 0
do a nguyên tố > 5 nên a ko chia hết cho 3 => a² chia 3 dư 1 => a²-1 chia hết cho 3
=> a^4 - 1 chia hết cho 3
* bình phương của số nguyên chia 5 dư 0, 1 hoặc 4
a nguyên tố > 5 => a² chia 5 dư 1 hoặc 4
nếu a² chia 5 dư 1 => a²-1 chia hết cho 5
nếu a² chia 5 dư 4 => a²+1 chia hết cho 5
=> a^4 - 1 chia hết cho 5
* a nguyên tố > 5 => a lẻ ; đặt a = 2m+1
a^4 - 1 = (a-1)(a+1)(a²+1) = (2m)(2m+2)(4m²+4m+2)
a^4 - 1 = 8(m)(m+1)(2m²+2m+1)
m(m+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => a^4 -1 chia hết cho 16
từ 3 điều trên và chú ý BCNN[3,5,16] = 240 => a^4 - 1 chia hết cho 240
ta có khai triển:
b^n - 1 = (b-1).[b^(n-1) + b^(n-2) + ...+ 1] = (b-1).p
ad với b = a^4 ; (a^4)^k - 1 = (a^4 -1).p
mà a^4 -1 chia hết cho 240 nên a^4k - 1 = (a^4 -1)p chia hết cho 240
Vì p là số nguyen tố lớn hơn 3 nên p là số lẻ không chia hết cho 3\(\Rightarrow\)
p không chia hết cho 3 thì p^2 chia 3 dư 1 nên p^2-1 chia hết cho 3 (1)
Lại có p^2-1=(p-1)(p+1) vì p là số lẻ nên p-1 và p+1 là 2 số chẵn liên tiếp nên (p-1)(p+1) chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-1 chia hết cho 3.8=24(vì 8 và 3 nguyên tố cùng nhau)
câu a là 1 hàng đẳng thức bạn nhé
Vế trái = (a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
b) p^2-1=(p-1)(p+1)
Do p>3 và p là SNT => p ko chia hết cho 3 => p chia 3 dư 1 hoặc 2
+ Nếu p:3 dư 1 thì p-1 chia hết cho 3
+ Nếu p:3 dư 2 thì p+1 chia hết cho 3
=> p^2-1 chia hết cho 3.
Do p>3, p NT=> p lẻ=> p=2k+1
Thay vào đc p^2-1=2k(2k+2)
=4k(k+1)
Do k và k+1 là 2 số tự nhiên liên tiếp => chia hết cho 2
=> 4k(k+1) chia hết cho 8=> p^2-1 chia hết cho 8
Tóm lại p^2-1 chia hết cho 24 do (3,8)=1
2) p^4-1=(p^2-1)(p^2+1)
Theo câu a thì p^2-1 chia hết cho 24
Do p lẻ (p là SNT >3)
=> p^2 cx lẻ => p^2+1 chẵn do 1 lẻ
=> p^2+1 chia hết cho 2
=> p^4-1 chia hết cho 48 (đpcm).