Tìm min P=x+64/(x-y)^2(y+1)
Gợi ý:sử dụng định lí cauchy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y = \(\sqrt[3]{\left(x^2+8\right)^2}-3\sqrt[3]{x^2+8}+1\)
Đặt \(\sqrt[3]{\left(x^2+8\right)}=t\)
Do x2 + 8 ≥ 8 với mọi x
⇒ t ≥ 2 với mọi x
y = t2 - 3t + 1
Min của hàm số đã cho là Min của y = g(t) = t2 - 3t + 1 trên [2 ; +\(\infty\))
g(t) đồng biến trên \(\left(\dfrac{3}{2};+\infty\right)\) nên nó đồng biến trên (2 ; +\(\infty\))
⇒ Giá trị nhỏ nhất của g(t) trên [2 ; +\(\infty\)) là g(2) = - 1
Cho x,y\(\ge\)0 thỏa mãn \(x^2+y^2\)=1. CMR:
\(\dfrac{1}{\sqrt{2}}\le x^3+y^3\le1\)
(Sử dụng Cauchy)