Tìm số tự nhiên n lớn nhất sao cho 29n là ước của 2003!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(29^n\varepsilon U\left(2003\right)\Leftrightarrow29^n\le2003\Rightarrow n< 3\)mà\(n\varepsilon N\Rightarrow n\varepsilon\left\{0;1;2\right\}\Rightarrow29^n\varepsilon\left\{1,29,841\right\}\left(1\right)\)
Lại có:\(2003⋮29^n\left(2\right)\)
Từ (1) và (2) => n = 0
a) Vì nên (n + 1) ∈ Ư(6) = {1; 2; 3; 6}
Ta có bảng sau:
n + 1 | 1 | 2 | 3 | 6 |
n | 0 | 1 | 2 | 5 |
Vì n là số tự nhiên nên n ∈ {0; 1; 2; 5}
Vậy n ∈ {0; 1; 2; 5}.
b) Gọi x = 23.3a và y = 2b.35
Ta có tích của hai số là tích của ƯCLN và BCNN của hai số đó.
Ta có: x. y = ƯCLN(x, y). BCNN(x, y)
Vì ước chung lớn nhất của hai số là và bội chung nhỏ nhất của hai số là 23.36.
Vì thế 3 + b = 5. Suy ra b = 5 – 3 = 2
a + 5 = 11. Suy ra a = 11 – 5 = 6
Vậy a = 6; b = 2.
Gọi x = 23.3a và y = 2b.35
Ta có: x. y = ƯCLN(x, y). BCNN(x, y)
Vì ước chung lớn nhất của hai số là 22.35 và bội chung nhỏ nhất của hai số là 23.36
Ta được x.y=
Mà xy =
Ta được 5=3+b và 11=a+5
Vậy b=2 và a=6
a: \(n+1\in\left\{1;2;3;6\right\}\)
hay \(n\in\left\{0;1;2;5\right\}\)
a: \(\Leftrightarrow n+1\in\left\{1;2;3;6\right\}\)
hay \(n\in\left\{0;1;2;5\right\}\)
a=1.2.3.4.5.6.7.8.9.10.
=2^8.3^4.5^2.7
=(2^4.3^2.5)^2.7
Vậy n=2^4.3^2.5=720
- Gọi d là ước chung lớn nhất của n và n + 2
=> n chia hết d và n + 2 chia hết d
=> ( n + 2 ) - n chia hết d
=> 2 chia hết d
=> d = 1 hoặc 2
Nếu n lẻ => d = 1
Nếu n chẵn => d = 2
Vậy ước chung lớn nhất của n và n + 2 là 1 hoặc 2
Ta có : Nếu ước chung lớn nhất của n và n + 2 = 1
thì bội chung nhỏ nhất của n và n +2 = n(n+2)
Nếu ước chung lớn nhất của n và n +2 là 2
thì bội chung nhỏ nhất của n và n +2 = n(n+2) : 2
Làm như thế này có đúng không vậy ?
câu trả lời là mới hok lp 5 sang năm lên lp 6 :)
Gọi 2 số đó là a và b, ƯCLN(a,b)=d
=>a=da'
b=db'
(a',b')=1
BCNN(a,b)=da'b'
Tổng ƯCLN và BCNN là d+da'b'=d(a'b'+1)=126
126 phân tích ra thừa số nguyên tố là 2.32.7
Do đó d=2 hoặc a'b'+1=2
Nếu d=2 thì a'b'+1=126:2=63
a'b'=62. Giả sử a>b thì a'>b'
TH1: a'=31, b'=2 =>a=31.2=62, b=2.2=4. a-b=58
TH2 a'=62, b'=1 =>a=62.2=124, b=2. a-b=122.
Hiệu nhỏ nhất nếu d=2 là 58
Tiếp theo ta xét
a'b'+1=2
a'b=1
=>a'=b'=1
Khi đó d=126:2=63
Ta có a=63, b=63
a-b=0
Tuy nhiên đề bài yêu cầu tìm hiệu dương mà số 0 ko dương cũng ko âm
Vậy 2 số cần tìm là 62 và 4
Từ 1 tới 2003, số lượng số hạng chia hết cho 29 là:
\(\frac{\left(2001-29\right)}{29}+1=69\). Vậy 2003❗ chia hết cho \(29^{69}\)
Vậy n lớn nhất bằng 69 thì \(29^n\) là ước của 2003❕
Có 71 cơ bn ạ. Mk bt nhưng k bt trình bày ntn thôi.