\(\frac{cot^2a-cos^2a}{cot^2a}+\frac{sina.cosa}{cota}=1\)Chứng minh đẳng thức :
Các bạn giải gấp cho mình câu này nha . Mình đang cần rất gấp bạn nào giải đúng mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\frac{\cot ^2a-\cos ^2}{\cot ^2a}+\frac{\sin a\cos a}{\cot a}=1-\frac{\cos ^2a}{\cot ^2a}+\frac{\sin a\cos a}{\cot a}\)
\(=1-\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}+\frac{\sin a\cos a}{\frac{\cos a}{\sin a}}=1-\sin ^2a+\sin ^2a=1\)
Ta có đpcm.
\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)
\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)
\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=1-3sin^2a.cos^2a\)
\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)
\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)
\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)
\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)
\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=\frac{1}{sin^2a}\left(tan^3a-tana+cot^3a.tan^2a\right)\)
\(=\frac{1}{sin^2a}\left(tan^3a-tana+cota\right)=\left(1+cot^2a\right)\left(tan^3a-tana+cota\right)\)
\(=tan^3a-tana+cota+cot^2a.tan^3a-cot^2a.tana+cot^3a\)
\(=tan^3a-tana+cota+tana-cota+cot^3a\)
\(=tan^3a+cot^3a\)
\(sina+cosa=\sqrt{2}\Leftrightarrow\left(sina+cosa\right)^2=2\\ \)
\(\Leftrightarrow\sin^2a+2\sin a.cosa+cos^2a=2\)
\(\Leftrightarrow1+2.sina.cosa=2\)
\(\Leftrightarrow2.sina.cosa=2-1=1\)
\(\Leftrightarrow\sin a.cosa=\frac{1}{2}\)
Vậy P=sina.cosa=\(\frac{1}{2}\)
\(Q=\sin^4a+cos^4a\)
\(\Leftrightarrow\left(sin^2a\right)^2+\left(cos^2a\right)^2\)
\(\Leftrightarrow\left(sin^2a+cos^2a\right)^2-2.sin^2a.cos^2a\)
\(\Leftrightarrow1^2-2.sin^2a.cos^2a\) tách tiếp rồi thế vào là được .tương tự phàn P ý
còn R thì tách sin^3a=sin^2a+sina tương tự cos mũ 3 a cụng vậy
theo tớ là như thế còn có sai thì đừng có ném đá ném gạch na
\(VP=\frac{2\sin^2x-1}{\sin^4x}=\frac{\sin^2x+\sin^2x-1}{\sin^4x}=\frac{\sin^2x-\cos^2x}{\sin^4x}\)
\(=\frac{\left(\sin^2x-\cos^2x\right).1}{\sin^4x}=\frac{\left(\sin^2x-\cos^2x\right)\left(\sin^2x+\cos^2x\right)}{\sin^4x}=\frac{\sin^4x-\cos^4x}{\sin^4x}\)
\(=1-\cot^4x\)=VT
\(1-\frac{sin^3x}{sinx+cosx}-\frac{cos^3x}{sinx+cosx}=1-\frac{sin^3x+cos^3x}{sinx+cosx}\)
\(=1-\frac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{sinx+cosx}=1-\left(1-sinxcosx\right)\)
\(=sinx.cosx\)
Lời giải:
a)
\(\frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{(\sin ^2a+\cos ^2a)+\cos ^2a-1}{\cot ^2a}=\frac{1+\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{(\frac{\cos a}{\sin a})^2}=\sin ^2a\)
b)
\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)
\(=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\tan ^2a+1-1=\tan ^2a\)
c)
\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}=\frac{\sin ^4a(\cos ^2a-1)}{\cos ^4a(\sin ^2a-1)}\)
\(=\frac{\sin ^4a(-\sin ^2a)}{\cos ^4a(-\cos ^2a)}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)
Giả sử có \(\Delta ABC\) có \(A=90^o;AH\) là đường cao
Có \(\sin\widehat{B}=\frac{AC}{BC};\cos\widehat{B}=\frac{AB}{BC};\tan\widehat{B}=\frac{AC}{AB};\cot\widehat{B}=\frac{AB}{AC}\)
\(\frac{\cot^2\widehat{B}-\cos^2\widehat{B}}{\cot^2\widehat{B}}+\frac{\sin\widehat{B}.\cos\widehat{B}}{\cot\widehat{B}}=\frac{\frac{AB^2}{AC^2}-\frac{AB^2}{BC^2}}{\frac{AB^2}{AC^2}}+\frac{\frac{AC}{BC}.\frac{AB}{BC}}{\frac{AB}{AC}}\)
\(=\frac{\frac{AB^2}{AC^2}}{\frac{AB^2}{AC^2}}-\frac{\frac{AB^2}{BC^2}}{\frac{AB^2}{AC^2}}+\frac{\frac{AC.AB}{BC^2}}{\frac{AB}{AC}}=1-\frac{AC^2}{BC^2}+\frac{AC^2}{BC^2}=1\)
Mấy bài nè vận dụng hệ thức sin cos tan cot