Câu 3: Đưa thừa số vào trong dấu căn:
a. 2a\(\sqrt{3a^2b}\) với a≥o và b≥0
b. -3ab2\(\sqrt{2a^2b^4}\) với a<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=6\left|a\right|b^2\sqrt{2}=6ab^2\sqrt{2}\\ b,=3\left|ab\right|\sqrt{3a}=-3ab\sqrt{3a}\)
câu 1
xét tích 3 số
=(3a^2.b.c^3).(-2a^3b^5c).(-3a^5.b^2.c^2)
=[3.(-2).(-3)].(a^2.a^3.a^5).(b.b^5.b^2).(c.c^3.c^2)
=18.a^10.b^8.c^5 bé hơn hoặc bằng 0
=>tích 3 số đó không thể cùng âm=>3 số đó ko cùng âm dc
bây giờ mk đi học rùi tí về mk làm típ nhá
Từ kết quả bài toán suy ngược ra thôi
Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức
Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)
Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi
a) \(\sqrt{\dfrac{2a}{3}}\cdot\sqrt{\dfrac{3a}{8}}\)
\(=\sqrt{\dfrac{2a\cdot3a}{3\cdot8}}\)
\(=\sqrt{\dfrac{6a^2}{24}}\)
\(=\sqrt{\dfrac{a^2}{4}}\)
\(=\dfrac{\sqrt{a^2}}{\sqrt{4}}\)
\(=\dfrac{a}{2}\)
b) \(\sqrt{3a}\cdot\sqrt{\dfrac{52}{a}}\)
\(=\sqrt{3a\cdot\dfrac{52}{a}}\)
\(=\sqrt{3\cdot52}\)
\(=\sqrt{13\cdot3\cdot4}\)
\(=2\sqrt{39}\)
c) \(2y^2\cdot\sqrt{\dfrac{x^4}{4y^2}}\)
\(=2y^2\cdot\dfrac{\sqrt{\left(x^2\right)^2}}{\sqrt{\left(2y\right)^2}}\)
\(=2y^2\cdot\dfrac{x^2}{-2y}\)
\(=\dfrac{2y^2\cdot x^2}{-2y}\)
\(=-x^2y\)
a)\(\dfrac{\sqrt{243a}}{\sqrt{3a}}=\dfrac{\sqrt{24}.\sqrt{3a}}{\sqrt{3a}}=2\sqrt{6}\)
b)\(\dfrac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}=3\sqrt{9b^2}=\left[{}\begin{matrix}9b\\-9b\end{matrix}\right.\)
\(a,=\sqrt{12a^4b}\\ b,\sqrt{18\left(-a\right)^4b^8}\)