Giải pt vô tỷ: \(\sqrt{6x-1}+\sqrt{9x^2-1}=6x-9x^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
\(pt\Leftrightarrow\sqrt{-x^2+2x+1+1}+\sqrt{-x^2-6x-9+1}=1+\sqrt{3}\)
\(\Leftrightarrow\sqrt{-\left(x-1\right)^2+1}+\sqrt{-\left(x+3\right)^2+1}=1+\sqrt{3}\)
Dễ thấy: \(VT\le2< 1+\sqrt{3}=VP\) (vô nghiệm)
b)\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
\(pt\Leftrightarrow\sqrt{9x^2-6x+1+1}+\sqrt{45x^2-30x+5+4}=\sqrt{-9x^2+6x-1+9}\)
\(\Leftrightarrow\sqrt{\left(3x-1\right)^2+1}+\sqrt{5\left(3x-1\right)^2+4}=\sqrt{-\left(3x-1\right)^2+9}\)
Dễ thấy: \(VT\ge1+\sqrt{4}=3=VP\)
Đẳng thức xảy ra khi \(x=\dfrac{1}{3}\)
a.
ĐKXĐ: \(x\ge-\dfrac{5}{3}\)
\(9x^2-3x-\left(3x+5\right)-\sqrt{3x+5}=0\)
Đặt \(\sqrt{3x+5}=t\ge0\)
\(\Rightarrow9x^2-3x-t^2-t=0\)
\(\Delta=9+36\left(t^2+t\right)=\left(6t+3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+6t+3}{18}=\dfrac{t+1}{3}\\x=\dfrac{3-6t-3}{18}=-\dfrac{t}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3x-1\\t=-3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+5}=3x-1\left(x\ge\dfrac{1}{3}\right)\\\sqrt{3x+5}=-3x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+5=9x^2-6x+1\left(x\ge\dfrac{1}{3}\right)\\3x+5=9x^2\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
c.
ĐKXĐ: \(x\ge-5\)
\(x^2-3x+2-x-5-\sqrt{x+5}=0\)
Đặt \(\sqrt{x+5}=t\ge0\)
\(\Rightarrow-t^2-t+x^2-3x+2=0\)
\(\Delta=1+4\left(x^2-3x+2\right)=\left(2x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{1+2x-3}{-2}=1-x\\t=\dfrac{1-2x+3}{-2}=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1-x\left(x\le1\right)\\\sqrt{x+5}=x-2\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2-2x+1\left(x\le1\right)\\x+5=x^2-4x+4\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
Lời giải:
ĐKXĐ: \(x\geq \frac{1}{3}\)
Đặt \(\sqrt{6x-1}=a; \sqrt{9x^2-1}=b(a.b\geq 0)\). Khi đó, PT đã cho trở thành:
\(a+b=a^2-b^2\)
\(\Leftrightarrow a+b=(a-b)(a+b)\)
\(\Leftrightarrow (a+b)(a-b-1)=0\Rightarrow \left[\begin{matrix} a+b=0\\ a=b+1\end{matrix}\right.\)
Nếu $a+b=0$. Do $a,b\geq 0$ nên $a=b=0$
\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)
Nếu \(a=b+1\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)
\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\) (bình phương 2 vế)
\(\Leftrightarrow (3x-1)^2+2\sqrt{9x^2-1}=0\)
Vì $(3x-1)^2; \sqrt{9x^2-1}\geq 0$ nên để điều trên xảy ra thì \((3x-1)^2=\sqrt{9x^2-1}=0\Rightarrow x=\frac{1}{3}\) (thỏa mãn)
Vậy........
Lời giải:
ĐKXĐ: \(x\geq \frac{1}{3}\)
Đặt \(\sqrt{6x-1}=a; \sqrt{9x^2-1}=b(a.b\geq 0)\). Khi đó, PT đã cho trở thành:
\(a+b=a^2-b^2\)
\(\Leftrightarrow a+b=(a-b)(a+b)\)
\(\Leftrightarrow (a+b)(a-b-1)=0\Rightarrow \left[\begin{matrix} a+b=0\\ a=b+1\end{matrix}\right.\)
Nếu $a+b=0$. Do $a,b\geq 0$ nên $a=b=0$
\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)
Nếu \(a=b+1\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)
\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\)\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\) (bình phương 2 vế)
\(\Leftrightarrow (3x-1)^2+2\sqrt{9x^2-1}=0\)
Vì $(3x-1)^2; \sqrt{9x^2-1}\geq 0$ nên để điều trên xảy ra thì \((3x-1)^2=\sqrt{9x^2-1}=0\Rightarrow x=\frac{1}{3}\) (thỏa mãn)
Vậy........